Skip to main content

The Influence of the Microbiota on Brain Structure and Function: Implications for Stress-Related Neuropsychiatric Disorders

  • Chapter
  • First Online:
Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis

Part of the book series: Progress in Inflammation Research ((PIR,volume 89))

Abstract

Based on research conducted during the last decade, it is becoming clear that the human microbiota plays an important role in the maintenance of human health. Recently, it has become clear that the human microbiota plays a role not only in physical health but also in mental health, which will be the focus of this chapter. Data suggest that, depending on the diversity and community composition of the human microbiota, the microbiota can either contribute to negative mental health outcomes or promote stress resilience. Here we will focus on the mechanisms through which the human microbiota influences mental health outcomes, with a focus on impacts on brain structure and function. In the context of these mechanisms, we will consider the consequences in humans of the large-scale transition from a hunter-gatherer existence or rural lifestyle to an urban lifestyle and the implications for functioning of the microbiota-gut-brain axis, brain structure and function, and mental health. Finally, we will consider the role of the human microbiota in vulnerability and resilience to stress-related psychiatric disorders, including anxiety disorders, affective disorders, and trauma- and stressor-related disorders, including posttraumatic stress disorder, and the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207.

    CAS  Google Scholar 

  2. O’Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol. 2016;196(12):4839–47.

    PubMed  Google Scholar 

  3. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):1–22.

    Google Scholar 

  4. Gilbert SF. Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J Biosci. 2014;39(2):201–9.

    PubMed  Google Scholar 

  5. Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. 2012;87(4):325–41.

    PubMed  Google Scholar 

  6. Flies EJ, Clarke LJ, Brook BW, Jones P. Urbanisation reduces the abundance and diversity of airborne microbes-but what does that mean for our health? A systematic review Sci Total Environ. 2020;738:140337.

    CAS  PubMed  Google Scholar 

  7. Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, et al. The microbiota, immunoregulation, and mental health: implications for public health. Curr Environ Health Rep. 2016;3(3):270–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller WB Jr. The microcosm within: evolution and extinction in the hologenome. Boca Raton, FL: Universal-Publishers; 2013.

    Google Scholar 

  9. Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 2018;9:84.

    PubMed  PubMed Central  Google Scholar 

  10. Yan B, Li J, Xiao N, Qi Y, Fu G, Liu G, Qiao M. Urban development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Sci Rep. 2016;6(1):1–9.

    CAS  Google Scholar 

  11. Lowry CA, Hollis JH, De Vries A, Pan B, Brunet LR, Hunt JR, Paton JF, van Kampen E, Knight DM, Evans AK, et al. Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. Neuroscience. 2007;146(2):756–72.

    CAS  PubMed  Google Scholar 

  12. Rook GA, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv Exp Med Biol. 2014;817:319–56.

    CAS  PubMed  Google Scholar 

  13. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015;77(1):229–35.

    CAS  PubMed  Google Scholar 

  14. Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A. Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur J Immunol. 2009;39(4):1098–107.

    CAS  PubMed  Google Scholar 

  15. Rook GA, Lowry CA. The hygiene hypothesis and psychiatric disorders. Trends Immunol. 2008;29(4):150–8.

    CAS  PubMed  Google Scholar 

  16. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76(3):181–9.

    PubMed  Google Scholar 

  17. Böbel TS, Hackl SB, Langgartner D, Jarczok MN, Rohleder N, Rook GA, Lowry CA, Gündel H, Waller C, Reber SO. Less immune activation following social stress in rural vs. urban participants raised with regular or no animal contact, respectively. Proc Natl Acad Sci. 2018;115(20):5259–64.

    PubMed  PubMed Central  Google Scholar 

  18. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psychiatry. 2018;9:44.

    PubMed  PubMed Central  Google Scholar 

  19. Hamill RW, Shapiro RE. Peripheral autonomic nervous system. In: Primer on the autonomic nervous system. Amsterdam: Elsevier; 2004. p. 20–8.

    Google Scholar 

  20. Tubbs RS, Rizk E, Shoja MM, Loukas M, Barbaro N, Spinner RJ. Nerves and nerve injuries: Vol 1: History, embryology, anatomy, imaging, and diagnostics. London: Academic Press; 2015.

    Google Scholar 

  21. Powley T. Vagal input to the enteric nervous system. Gut. 2000;47(suppl 4):iv30–2.

    PubMed  PubMed Central  Google Scholar 

  22. De Lartigue G, de La Serre CB, Raybould HE. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav. 2011;105(1):100–5.

    PubMed  PubMed Central  Google Scholar 

  23. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology. 2013;145(6):1323–33.

    CAS  PubMed  Google Scholar 

  25. Nagai Y, Takatsu K. Role of the immune system in obesity-associated inflammation and insulin resistance. In: Watson RR, editor. Nutrition in the prevention and treatment of abdominal obesity. Academic Press; 2014. p. 281–93. https://doi.org/10.1016/B978-0-12-407869-7.00026-X.

    Chapter  Google Scholar 

  26. Hale MW, Rook GA, Lowry CA. Pathways underlying afferent signaling of bronchopulmonary immune activation to the central nervous system. Allergy Nerv Syst. 2012;98:118–41.

    CAS  Google Scholar 

  27. Thomas KB. Benjamin Brodie: physiologist. Med Hist. 1964;8(3):286–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Forsythe P. Vagotomy and insights into the microbiota-gut-brain axis. Neurosci Res. 2021;168:20.

    CAS  PubMed  Google Scholar 

  29. Konsman JP, Luheshi GN, Bluthé R-M, Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci. 2000;12(12):4434–46.

    CAS  PubMed  Google Scholar 

  30. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci. 2011;108(38):16050–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101(2):246–59.

    CAS  PubMed  Google Scholar 

  32. Laye S, Bluthe R-M, Kent S, Combe C, Medina C, Parnet P, Kelley K, Dantzer R. Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS. Am J Phys Regul Integr Comp Phys. 1995;268(5):R1327–31.

    CAS  Google Scholar 

  33. Luheshi GN, Bluthé R-M, Rushforth D, Mulcahy N, Konsman J-P, Goldbach M, Dantzer R. Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Auton Neurosci. 2000;85(1–3):127–32.

    CAS  PubMed  Google Scholar 

  34. Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1β and LPS in vagotomized mice. Physiol Behav. 2005;85(4):500–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Dam A-M, Bol JG, Gaykema RP, Goehler LE, Maier SF, Watkins LR, Tilders FJ. Vagotomy does not inhibit high dose lipopolysaccharide-induced interleukin-1β immunoreactivity in rat brain and pituitary gland. Neurosci Lett. 2000;285(3):169–72.

    PubMed  Google Scholar 

  36. Ji JF, Dheen ST, Kumar SD, He BP, Tay SSW. Expressions of cytokines and chemokines in the dorsal motor nucleus of the vagus nerve after right vagotomy. Mol Brain Res. 2005;142(1):47–57.

    CAS  PubMed  Google Scholar 

  37. Goodnick PJ, Rush AJ, George MS, Marangell LB, Sackeim HA. Vagus nerve stimulation in depression. Expert Opin Pharmacother. 2001;2(7):1061–3.

    CAS  PubMed  Google Scholar 

  38. Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K. Effects of intraduodenal injection of Lactobacillus johnsonii la1 on renal sympathetic nerve activity and blood pressure in urethane anesthetized rats. Neurosci Lett. 2005;389(2):109–14.

    CAS  PubMed  Google Scholar 

  39. Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019b;12(1):9–18.

    PubMed  Google Scholar 

  40. Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry. 2011;70(10):937–45.

    CAS  PubMed  Google Scholar 

  41. Noble LJ, Chuah A, Callahan KK, Souza RR, McIntyre CK. Peripheral effects of vagus nerve stimulation on anxiety and extinction of conditioned fear in rats. Learn Mem. 2019a;26(7):245–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    CAS  PubMed  Google Scholar 

  43. Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Besedovsky H, Meneses D, Fleury A, Del Rey A, Gevorkian G, Fragoso G, Sciutto E. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm. 2016;13:33.

    CAS  Google Scholar 

  44. Shin HC, Jo BG, Lee C-Y, Lee K-W, Namgung U. Hippocampal activation of 5-HT1B receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. Eur J Neurosci. 2019;50(1):1820–30.

    PubMed  Google Scholar 

  45. Shin J-H, Park Y-H, Sim M, Kim S-A, Joung H, Shin D-M. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol. 2019b;170(4–5):192–201.

    CAS  PubMed  Google Scholar 

  46. Noble LJ, Gonzalez I, Meruva V, Callahan KA, Belfort BD, Ramanathan K, Meyers E, Kilgard MP, Rennaker RL, McIntyre CK. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl Psychiatry. 2017;7(8):e1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Souza RR, Robertson NM, McIntyre CK, Rennaker RL, Hays SA, Kilgard MP. Vagus nerve stimulation enhances fear extinction as an inverted-U function of stimulation intensity. Exp Neurol. 2021;341:113718.

    PubMed  Google Scholar 

  48. Kessler W, Traeger T, Westerholt A, Neher F, Mikulcak M, Müller A, Maier S, Heidecke C-D. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbeck’s Arch Surg. 2006;391(2):83–7.

    Google Scholar 

  49. Di Giovangiulio M, Bosmans G, Meroni E, Stakenborg N, Florens M, Farro G, Gomez-Pinilla PJ, Matteoli G, Boeckxstaens GE. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of α-7 nicotinic receptor. Mol Med. 2016;22(1):464–76.

    PubMed  PubMed Central  Google Scholar 

  50. Booth LC, Yao ST, Korsak A, Farmer DG, Hood SG, McCormick D, Boesley Q, Connelly AA, McDougall SJ, Korim WS, et al. Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimul. 2021;14(1):88–96.

    PubMed  PubMed Central  Google Scholar 

  51. Fontaine AK, Futia GL, Rajendran PS, Littich SF, Mizoguchi N, Shivkumar K, Ardell JL, Restrepo D, Caldwell JH, Gibson EA, Weir RFF. Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV. Sci Rep. 2021;11(1):3664.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hale MW, Raison CL, Lowry CA. Integrative physiology of depression and antidepressant drug action: implications for serotonergic mechanisms of action and novel therapeutic strategies for treatment of depression. Pharmacol Ther. 2013;137(1):108–18.

    CAS  PubMed  Google Scholar 

  53. Amoroso M, Böttcher A, Lowry CA, Langgartner D, Reber SO. Subcutaneous Mycobacterium vaccae promotes resilience in a mouse model of chronic psychosocial stress when administered prior to or during psychosocial stress. Brain Behav Immun. 2020;87:309–17.

    CAS  PubMed  Google Scholar 

  54. Foxx CL, Heinze JD, González A, Vargas F, Baratta MV, Elsayed AI, Stewart JR, Loupy KM, Arnold MR, Flux M, et al. Effects of immunization with the soil-derived bacterium Mycobacterium vaccae on stress coping behaviors and cognitive performance in a “two hit” stressor model. Front Physiol. 2020;11:524833.

    PubMed  Google Scholar 

  55. Reber SO, Langgartner D, Foertsch S, Postolache TT, Brenner LA, Guendel H, Lowry CA. Chronic subordinate colony housing paradigm: a mouse model for mechanisms of PTSD vulnerability, targeted prevention, and treatment—2016 Curt Richter award paper. Psychoneuroendocrinology. 2016a;74:221–30.

    PubMed  Google Scholar 

  56. Kim HS, Yosipovitch G. The skin microbiota and itch: is there a link? J Clin Med. 2020;9(4):1190.

    CAS  PubMed Central  Google Scholar 

  57. Mendez R, Banerjee S, Bhattacharya SK, Banerjee S. Lung inflammation and disease: a perspective on microbial homeostasis and metabolism. IUBMB Life. 2019;71(2):152–65.

    CAS  PubMed  Google Scholar 

  58. Amoroso M, Kempter E, Eleslambouly T, Lowry CA, Langgartner D, Reber SO. Intranasal Mycobacterium vaccae administration prevents stress-induced aggravation of dextran sulfate sodium (DSS) colitis. Brain Behav Immun. 2019;80:595–604.

    PubMed  Google Scholar 

  59. Macovei L, McCafferty J, Chen T, Teles F, Hasturk H, Paster BJ, Campos-Neto A. The hidden ‘mycobacteriome’ of the human healthy oral cavity and upper respiratory tract. J Oral Microbiol. 2015;7(1):26094.

    PubMed  Google Scholar 

  60. Shiozawa P, Duailibi MS, da Silva ME, Cordeiro Q. Trigeminal nerve stimulation (TNS) protocol for treating major depression: an open-label proof-of-concept trial. Epilepsy Behav. 2014;39:6–9.

    PubMed  Google Scholar 

  61. Riviere GR, Riviere K, Smith K. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol. 2002;17(2):113–8.

    CAS  PubMed  Google Scholar 

  62. Boggian I, Buzzacaro E, Calistri A, Calvi P, Cavaggioni A, Mucignat Caretta C, Palu G. Asymptomatic herpes simplex type 1 virus infection of the mouse brain. J Neurovirol. 2000;6(4):303–13.

    CAS  PubMed  Google Scholar 

  63. Kelly J, Wrynn A, Leonard B. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther. 1997;74(3):299–316.

    CAS  PubMed  Google Scholar 

  64. Ozcan H, Aydın N, Aydın MD, Oral E, Gündğdu C, Şipal S, Halıcı Z. Olfactory bulbectomy and raphe nucleus relationship: a new vision for well-known depression model. Nordic J Psychiatry. 2020;74(3):194–200.

    Google Scholar 

  65. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, SiltbergLiberles J, Liberles DA, Buck LB. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci. 2009;106(24):9842–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459(7246):574–7.

    PubMed  Google Scholar 

  67. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, Wainger B, Strominger A, Muralidharan S, Horswill AR, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501(7465):52–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim D-Y, Sato A, Fukuyama S, Sagara H, Nagatake T, Kong IG, Goda K, Nochi T, Kunisawa J, Sato S, et al. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. J Immunol. 2011;186(7):4253–62.

    CAS  PubMed  Google Scholar 

  69. Bastiaanssen TF, Cussotto S, Claesson MJ, Clarke G, Dinan TG, Cryan JF. Gutted! Unraveling the role of the microbiome in major depressive disorder. Harv Rev Psychiatry. 2020;28(1):26.

    PubMed  PubMed Central  Google Scholar 

  70. Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms. 2021;9(4):723.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Flux M, Lowry CA. Finding intestinal fortitude: integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis. 2020;135:104578.

    CAS  PubMed  Google Scholar 

  72. Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics. 2018;15(1):36–59.

    CAS  PubMed  Google Scholar 

  73. Leonard BE. The immune system, depression and the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry. 2001;25(4):767–80.

    CAS  Google Scholar 

  74. Loupy KM, Lowry CA. Posttraumatic stress disorder and the gut microbiome. In: the Oxford handbook of the microbiome-gut-brain Axis. Oxford: Oxford University Press; 2019.

    Google Scholar 

  75. Schultebraucks K, Qian M, Abu-Amara D, Dean K, Laska E, Siegel C, Gautam A, Guffanti G, Hammamieh R, Misganaw B, et al. Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: a machine-learning approach for analyzing multivariate predictors. Mol Psychiatry. 2021;26:5011–22.

    PubMed  Google Scholar 

  76. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci. 2013;110(46):18360–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–60.

    CAS  PubMed  Google Scholar 

  79. Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Kuijlaars J, Langlois X, Matthews LJ, Ver Donck L, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediat Inflamm. 2013;2013:271359.

    Google Scholar 

  80. Nicoll R. Sickness behavior may follow fracture as well as infection. Brain Behav Immun Health. 2020;1:100002.

    Google Scholar 

  81. Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG, Kopelman JM, Lowe KR, Wheeler KJ, Fox JH, Hassell JE, et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci. 2016;113(22):E3130–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin. 2009;29(2):247–64.

    Google Scholar 

  83. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31.

    CAS  PubMed  Google Scholar 

  84. Langgartner D, Lowry CA, Reber SO. Old friends, immunoregulation, and stress resilience. Pflug Arch Eur J Physiol. 2019;471(2):237–69.

    CAS  Google Scholar 

  85. Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev. 1998;105(1):83.

    CAS  PubMed  Google Scholar 

  86. Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation. 1995;2(4):241–8.

    CAS  PubMed  Google Scholar 

  87. Nisapakultorn K, Makrudthong J, Sa-Ard-Iam N, Rerkyen P, Mahanonda R, Takikawa O. Indoleamine 2, 3-dioxygenase expression and regulation in chronic periodontitis. J Periodontol. 2009;80(1):114–21.

    PubMed  Google Scholar 

  88. Maes M, Leonard B, Myint A, Kubera M, Verkerk R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATS), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):702–21.

    CAS  Google Scholar 

  89. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, Souza DO. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int. 2002;40(7):621–7.

    CAS  PubMed  Google Scholar 

  90. Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000;7(3):153–9.

    CAS  PubMed  Google Scholar 

  91. Tavares RG, Schmidt AP, Abud J, Tasca CI, Souza DO. In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem Res. 2005;30(4):439–44.

    CAS  PubMed  Google Scholar 

  92. Zhu C-B, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology. 2010;35(13):2510–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab. 2008;9(7):622–7.

    CAS  PubMed  Google Scholar 

  94. Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347(1):1–16.

    PubMed  PubMed Central  Google Scholar 

  95. Wohleb ES, Hanke ML, Corona AW, Powell ND, La’Tonia MS, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF. β-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci. 2011;31(17):6277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Langgartner D, Fuchsl AM, Uschold-Schmidt N, Slattery DA, Reber SO. Chronic subordinate colony housing paradigm: a mouse model to characterize the consequences of insufficient glucocorticoid signaling. Front Psychiatry. 2015;6:18.

    PubMed  PubMed Central  Google Scholar 

  97. Bailey MT, Engler H, Powell ND, Padgett DA, Sheridan JF. Repeated social defeat increases the bactericidal activity of splenic macrophages through a Toll-like receptor-dependent pathway. Am J Phys Regul Integr Comp Phys. 2007;293(3):R1180–90.

    CAS  Google Scholar 

  98. Powell ND, Bailey M, Mays J, Stiner-Jones L, Hanke M, Padgett D, Sheridan JF. Repeated social defeat activates dendritic cells and enhances toll-like receptor dependent cytokine secretion. Brain Behav Immun. 2009;23(2):225–31.

    CAS  PubMed  Google Scholar 

  99. Wan J, Shan Y, Fan Y, Fan C, Chen S, Sun J, Zhu L, Qin L, Yu M, Lin Z. NF-κB inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Mol Med Rep. 2016;14(5):4505–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Engler H, Engler A, Bailey MT, Sheridan JF. Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice. J Neuroimmunol. 2005;163(1–2):110–9.

    CAS  PubMed  Google Scholar 

  101. Hanke M, Powell N, Stiner L, Bailey MT, Sheridan JF. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun. 2012;26(7):1150–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. 2018;172(3):500–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Boehme M, Van de Wouw M, Van Sandhu K, Lyons K, Fouhy F, Ramirez LO, Van Leuven L, Golubeva A, Scott K, Stanton C, et al. Targeting the gut microbiome to reverse microglia activation and stress-induced immune priming in ageing. Eur Neuropsychopharmacol. 2018;28:S18–9.

    Google Scholar 

  104. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21(1):47–59.

    CAS  PubMed  Google Scholar 

  105. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015;8:447.

    PubMed  PubMed Central  Google Scholar 

  106. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33(34):13820–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102.

    PubMed  PubMed Central  Google Scholar 

  108. Kerfoot SM, D’Mello C, Nguyen H, Ajuebor MN, Kubes P, Le T, Swain MG. TNF-α–secreting monocytes are recruited into the brain of cholestatic mice. Hepatology. 2006;43(1):154–62.

    PubMed  Google Scholar 

  109. Walker WS. Separate precursor cells for macrophages and microglia in mouse brain: immunophenotypic and immunoregulatory properties of the progeny. J Neuroimmunol. 1999;94(1–2):127–33.

    CAS  PubMed  Google Scholar 

  110. Pinheiro MAL, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Bas Dis. 2016;1862(3):461–71.

    Google Scholar 

  111. Unger WW, Laban S, Kleijwegt FS, van der Slik AR, Roep BO. Induction of Treg by monocyte-derived dc modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol. 2009;39(11):3147–59.

    CAS  PubMed  Google Scholar 

  112. Lasiglie D, Traggiai E, Federici S, Alessio M, Buoncompagni A, Accogli A, Chiesa S, Penco F, Martini A, Gattorno M. Role of IL-1 beta in the development of human Th 17 cells: lesson from NLPR3 mutated patients. PLoS One. 2011;6(5):e20014.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Axtell RC, Steinman L. Gaining entry to an uninflamed brain. Nat Immunol. 2009;10(5):453–5.

    CAS  PubMed  Google Scholar 

  114. Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech. 2001;52(1):112–29.

    CAS  PubMed  Google Scholar 

  115. Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov. 2005;4(6):510–8.

    CAS  PubMed  Google Scholar 

  116. Kertser A, Baruch K, Cooper I, Schwartz M. Severe psychological stress impairs choroid plexus gateway activity for leukocyte trafficking. Brain Behav Immun. 2017;66:e10.

    Google Scholar 

  117. Kertser A, Baruch K, Deczkowska A, Weiner A, Croese T, Kenigsbuch M, Cooper I, Tsoory M, Ben-Hamo S, Amit I, et al. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Sci Adv. 2019;5(5):eaav4111.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6.

    CAS  PubMed  Google Scholar 

  119. Eisenstein EM, Williams CB. The Treg/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. 2009;65(7):26–31.

    Google Scholar 

  120. Prats N, Briones V, Blanco M, Altimira J, Ramos J, Dominguez L, Marco A. Choroiditis and meningitis in experimental murine infection with Listeria monocytogenes. Eur J Clin Microbiol Infect Dis. 1992;11(8):744–7.

    CAS  PubMed  Google Scholar 

  121. Wewer C, Seibt A, Wolburg H, Greune L, Schmidt MA, Berger J, Galla H-J, Quitsch U, Schwerk C, Schroten H, et al. Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis. J Neuroinflammation. 2011;8(1):1–21.

    Google Scholar 

  122. Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, Fehlmann T, Stein JA, Schaum N, Lee DP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595:1–10.

    Google Scholar 

  123. Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, Holden SJ, Raber J, Banks WA, Erickson MA. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci. 2021;24(3):368–78.

    CAS  PubMed  Google Scholar 

  124. Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus—a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 2015;9:80.

    PubMed  PubMed Central  Google Scholar 

  125. Hollis JH, Evans AK, Bruce KP, Lightman SL, Lowry CA. Lipopolysaccharide has indomethacin-sensitive actions on Fos expression in topographically organized subpopulations of serotonergic neurons. Brain Behav Immun. 2006;20(6):569–77.

    CAS  PubMed  Google Scholar 

  126. Adams VC, Hunt JR, Martinelli R, Palmer R, Rook GA, Brunet LR. Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. Eur J Immunol. 2004;34(3):631–8.

    CAS  PubMed  Google Scholar 

  127. Smith DG, Martinelli R, Besra GS, Illarionov PA, Szatmari I, Brazda P, Allen MA, Xu W, Wang X, Nagy L, et al. Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology. 2019;236(5):1653–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Miyamoto J, Mizukure T, Park S-B, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem. 2015;290(5):2902–18.

    CAS  PubMed  Google Scholar 

  129. Cigliano L, Spagnuolo MS, Boscaino F, Ferrandino I, Monaco A, Capriello T, Cocca E, Iannotta L, Treppiccione L, Luongo D, et al. Dietary supplementation with fish oil or conjugated linoleic acid relieves depression markers in mice by modulation of the NRF2 pathway. Mol Nutr Food Res. 2019;63(21):1900243.

    CAS  Google Scholar 

  130. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. NRF2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis. 2017;1863(2):585–97.

    CAS  PubMed  Google Scholar 

  131. Hashimoto K. Essential role of keap1-nrf2 signaling in mood disorders: overview and future perspective. Front Pharmacol. 2018;9:1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EM, Sanders ME, Shamir R, Swann JR, Szajewska H, et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.

    PubMed  PubMed Central  Google Scholar 

  133. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314(1):119–29.

    CAS  PubMed  Google Scholar 

  134. Ruck T, Bittner S, Meuth SG. Blood-brain barrier modeling: challenges and perspectives. Neural Regen Res. 2015;10(6):889.

    PubMed  PubMed Central  Google Scholar 

  135. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Perez CF, Golden SA, Tamminga C, Turecki G, et al. Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci. 2020;117(6):3326–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, Calkin C. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. NeuroImage: Clin. 2020;26:102049.

    Google Scholar 

  138. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, Takahashi A, Flanigan ME, Aleyasin H, LeClair KB, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20(12):1752–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fitch MT, Silver J. Activated macrophages and the blood–brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol. 1997;148(2):587–603.

    CAS  PubMed  Google Scholar 

  140. Cook S, Sellin J. Short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12(6):499–507.

    CAS  PubMed  Google Scholar 

  141. Cummings J, Pomare E, Branch W, Naylor C, Macfarlane G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyratemediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci. 2008;105(43):16767–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hoyles L, Snelling T, Umlai U-K, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome. 2018;6(1):1–13.

    Google Scholar 

  147. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.

    PubMed  PubMed Central  Google Scholar 

  148. Al-Asmakh M, Stukenborg J-B, Reda A, Anuar F, Strand M-L, Hedin L, Pettersson S, Söder O. The gut microbiota and developmental programming of the testis in mice. PLoS One. 2014;9(8):e103809.

    PubMed  PubMed Central  Google Scholar 

  149. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.

    CAS  PubMed  Google Scholar 

  150. Yuan S, Liu KJ, Qi Z. Occludin regulation of blood–brain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 2020;6(3):152.

    PubMed  PubMed Central  Google Scholar 

  151. Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 2003;73(13):1683–90.

    CAS  PubMed  Google Scholar 

  152. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21.

    CAS  PubMed  Google Scholar 

  153. Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert E-V, Klein M, Thal SC, Bopp T, Schäfer MK. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation. 2019;16(1):1–14.

    Google Scholar 

  154. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, Gao Y, Chen J, Hu X. Essential role of program death 1-ligand 1 in regulatory T cell–afforded protection against blood–brain barrier damage after stroke. Stroke. 2014;45(3):857–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gulanski BI, De Feyter HM, Page KA, Belfort-DeAguiar R, Mason GF, Rothman DL, Sherwin RS. Increased brain transport and metabolism of acetate in hypoglycemia unawareness. J Clin Endocrinol Metab. 2013;98(9):3811–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hofmann J, Raifer H, Vachharajani N, Carrascosa LC, et al. The short chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun. 2019;10(1):1–12.

    Google Scholar 

  157. Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):1–14.

    Google Scholar 

  158. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481.

    PubMed  PubMed Central  Google Scholar 

  160. Naghipour S, Cox AJ, Peart JN, Du Toit EF, Headrick JP. Trimethylamine N-oxide: heart of the microbiota–CVD nexus? Nutr Res Rev. 2020;34:1–22.

    Google Scholar 

  161. Tang WW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089–105.

    PubMed  PubMed Central  Google Scholar 

  162. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Snelling T, Solito E, Fonseca S, Carvalho AL, Carding SR, Muller M, et al. Regulation of blood-brain barrier integrity and cognition by the microbiome-associated methylamines trimethylamine n-oxide and trimethylamine. bioRxiv. 2021;

    Google Scholar 

  163. McArthur S, Carvalho A, Fonseca S, Snelling T, Nicholson J, Glen R, Carding S, Hoyles L. Effects of gut-derived trimethylamines on the blood–brain barrier. In: Alzheimer’s Research UK Conference; 2018.

    Google Scholar 

  164. Liu Y, Huang Y. Elevated trimethylamine-N-oxide levels may contributes to progression of cerebral small vessel diseases in poststroke patients via blood brain barrier disruption. Circulation. 2015;132(Suppl 3):A18781.

    Google Scholar 

  165. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617.

    PubMed  PubMed Central  Google Scholar 

  167. Greenwood J, Adu J, Davey A, Abbott N, Bradbury M. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood-brain barrier. J Cereb Blood Flow Metab. 1991;11(4):644–54.

    CAS  PubMed  Google Scholar 

  168. Naqvi SM, Herndon B, Del Rosario L, Nicholas H. Intracerebrally injected monohydroxy and other C 24 steroid acids as demyelinating agents in the Guinea pig. Lipids. 1970;5(12):964–9.

    CAS  PubMed  Google Scholar 

  169. Palmela I, Correia L, Silva RF, Sasaki H, Kim KS, Brites D, Brito MA. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study. Front Neurosci. 2015;9:80.

    PubMed  PubMed Central  Google Scholar 

  170. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Park YJ, Lee HK. The role of skin and orogenital microbiota in protective immunity and chronic immune-mediated inflammatory disease. Front Immunol. 2018;8:1955.

    PubMed  PubMed Central  Google Scholar 

  172. Idris A, Hasnain SZ, Huat LZ, Koh D. Human diseases, immunity and the oral microbiota—insights gained from metagenomic studies. Oral Sci Int. 2017;14(2):27–32.

    Google Scholar 

  173. Banks WA, Erickson MA. The blood–brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26–32.

    CAS  PubMed  Google Scholar 

  174. Mark KS, Miller DW. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci. 1999;64(21):1941–53.

    CAS  PubMed  Google Scholar 

  175. Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135–57.

    PubMed  Google Scholar 

  176. Furutama D, Matsuda S, Yamawaki Y, Hatano S, Okanobu A, Memida T, Oue H, Fujita T, Ouhara K, Kajiya M, et al. IL-6 induced by periodontal inflammation causes neuroinflammation and disrupts the blood–brain barrier. Brain Sci. 2020;10(10):679.

    CAS  PubMed Central  Google Scholar 

  177. Han E-C, Choi S-Y, Lee Y, Park J-W, Hong S-H, Lee H-J. Extracellular RNAs in periodonto-pathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J. 2019;33(12):13412–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 2009;30(11):547–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sayed BA, Christy AL, Walker ME, Brown MA. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol. 2010;184(12):6891–900.

    CAS  PubMed  Google Scholar 

  180. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1–9.

    CAS  Google Scholar 

  181. Geng J, Wang L, Zhang L, Qin C, Song Y, Ma Y, Chen Y, Chen S, Wang Y, Zhang Z, et al. Blood-brain barrier disruption induced cognitive impairment is associated with increase of inflammatory cytokine. Front Aging Neurosci. 2018;10:129.

    PubMed  PubMed Central  Google Scholar 

  182. Nishino H, Nakajima K, Kumazaki M, Fukuda A, Muramatsu K, Deshpande SB, Inubushi T, Morikawa S, Borlongan CV, Sanberg PR. Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. Neurosci Res. 1998;30(4):303–12.

    CAS  PubMed  Google Scholar 

  183. Na W, Lee JY, Kim W-S, Yune TY, Ju B-G. 17β-estradiol ameliorates tight junction disruption via repression of MMP transcription. Mol Endocrinol. 2015;29(9):1347–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sohrabji F. Guarding the blood–brain barrier: a role for estrogen in the etiology of neurodegenerative disease. Gene Expr. 2006;13(6):311–9.

    CAS  Google Scholar 

  185. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.

    CAS  PubMed  Google Scholar 

  186. Wilson AC, Clemente L, Liu T, Bowen RL, Meethal SV, Atwood CS. Reproductive hormones regulate the selective permeability of the blood-brain barrier. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2008;1782(6):401–7.

    CAS  Google Scholar 

  187. Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA. The changing landscape of the vaginal microbiome. Clin Lab Med. 2014;34(4):747–61.

    PubMed  PubMed Central  Google Scholar 

  188. Bayigga L, Nabatanzi R, Ssekagiri A, Kateete DP, Sekikubo M, Anderson DJ, Xu J, Kwon DS, Nakanjako D. Diverse vaginal microbiome was associated with pro-inflammatory vaginal milieu among pregnant women in Uganda. Hum Microb J. 2020;18:100076.

    Google Scholar 

  189. Amabebe E, Anumba DO. The vaginal microenvironment: the physiologic role of lactobacilli. Front Med. 2018;5:181.

    Google Scholar 

  190. Caillouette JC, Sharp CF Jr, Zimmerman GJ, Roy S. Vaginal pH as a marker for bacterial pathogens and menopausal status. Am J Obstet Gynecol. 1997;176(6):1270–7.

    CAS  PubMed  Google Scholar 

  191. Atallah A, Mhaouty-Kodja S, Grange-Messent V. Chronic depletion of gonadal testosterone leads to blood–brain barrier dysfunction and inflammation in male mice. J Cereb Blood Flow Metab. 2017;37(9):3161–75.

    CAS  PubMed  Google Scholar 

  192. Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One. 2014;9(1):e84877.

    PubMed  PubMed Central  Google Scholar 

  193. Hou R, Ye G, Liu Y, Chen X, Pan M, Zhu F, Fu J, Fu T, Liu Q, Gao Z, et al. Effects of SSRIs on peripheral inflammatory cytokines in patients with generalized anxiety disorder. Brain Behav Immun. 2019a;81:105–10.

    CAS  PubMed  Google Scholar 

  194. Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: early life exposure to doxycycline. Chemosphere. 2019b;222:722–31.

    CAS  PubMed  Google Scholar 

  195. Takahashi S, Maeda T, Sano Y, Nishihara H, Takeshita Y, Shimizu F, Kanda T. Active form of vitamin D directly protects the blood–brain barrier in multiple sclerosis. Clin Exp Neuroimmunol. 2017;8(3):244–54.

    CAS  Google Scholar 

  196. Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009;77(8):1303–15.

    CAS  PubMed  Google Scholar 

  197. Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer H-C, Bauer H. Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal. 2011;15(5):1305–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Ballard JWO, Towarnicki SG. Mitochondria, the gut microbiome and ROS. Cell Signal. 2020;75:109737.

    CAS  PubMed  Google Scholar 

  199. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci. 2009;106(10):3698–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry. 2018;8(1):1–17.

    CAS  Google Scholar 

  201. Tavallaie M, Voshtani R, Deng X, Qiao Y, Jiang F, Collman JP, Fu L. Moderation of mitochondrial respiration mitigates metabolic syndrome of aging. Proc Natl Acad Sci. 2020;117(18):9840–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Benarroch EE. Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology. 2011;77(12):1198–204.

    PubMed  Google Scholar 

  203. Kays JL, Hurley RA, Taber KH. The dynamic brain: neuroplasticity and mental health. J Neuropsychiatry Clin Neurosci. 2012;24(2):118–24.

    PubMed  Google Scholar 

  204. Woollett K, Maguire EA. Acquiring “the knowledge” of London’s layout drives structural brain changes. Curr Biol. 2011;21(24):2109–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Curtis MA, Kam M, Faull RL. Neurogenesis in humans. Eur J Neurosci. 2011;33(6):1170–4.

    PubMed  Google Scholar 

  206. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    CAS  PubMed  Google Scholar 

  207. Yau S-Y, Lau BW-M, So K-F. Adult hippocampal neurogenesis: a possible way how physical exercise counteracts stress. Cell Transplant. 2011;20(1):99–111.

    PubMed  Google Scholar 

  208. Taalman H, Wallace C, Milev R. Olfactory functioning and depression: a systematic review. Front Psychiatry. 2017;8:190.

    PubMed  PubMed Central  Google Scholar 

  209. Brezun JM, Daszuta A. Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci. 2000;12(1):391–6.

    CAS  PubMed  Google Scholar 

  210. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 2001;25(6):836–44.

    CAS  PubMed  Google Scholar 

  211. Jaako-Movits K, Zharkovsky T, Pedersen M, Zharkovsky A. Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration. Cell Mol Neurobiol. 2006;26(7–8):1557.

    Google Scholar 

  212. van der Stelt HM, Breuer ME, Olivier B, Westenberg HG. Permanent deficits in serotonergic functioning of olfactory bulbectomized rats: an in vivo microdialysis study. Biol Psychiatry. 2005;57(9):1061–7.

    PubMed  Google Scholar 

  213. Michelsen KA, Prickaerts J, Steinbusch HW. The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res. 2008;172:233–64.

    CAS  PubMed  Google Scholar 

  214. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24(1):677–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9(5):224–37.

    PubMed  Google Scholar 

  216. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic– pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–17.

    PubMed  Google Scholar 

  218. Neufeld K, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–e119.

    CAS  PubMed  Google Scholar 

  219. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, et al. The intestinal microbiota affects central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609.

    CAS  PubMed  Google Scholar 

  220. Rattiner LM, Davis M, Ressler KJ. Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learn Mem. 2004;11(6):727–31.

    PubMed  Google Scholar 

  221. Linz R, Puhlmann L, Apostolakou F, Mantzou E, Papassotiriou I, Chrousos G, Engert V, Singer T. Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology. 2019;44(10):1797–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102–12.

    CAS  PubMed  Google Scholar 

  223. Savignac HM, Corona G, Mills H, Chen L, Spencer JP, Tzortzis G, Burnet PW. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int. 2013;63(8):756–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Barichello T, Generoso JS, Simões LR, Faller CJ, Ceretta RA, Petronilho F, Lopes-Borges J, Valvassori SS, Quevedo J. Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol Neurobiol. 2015;52(1):734–40.

    CAS  PubMed  Google Scholar 

  225. Heyck M, Ibarra A. Microbiota and memory: a symbiotic therapy to counter cognitive decline? Brain Circ. 2019;5(3):124.

    PubMed  PubMed Central  Google Scholar 

  226. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213.

    CAS  PubMed  Google Scholar 

  227. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13(7):826–34.

    CAS  PubMed  Google Scholar 

  228. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32(8–10):1106–15.

    CAS  PubMed  Google Scholar 

  229. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207(5):1067–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Vallieres L, Campbell IL, Gage FH, Sawchenko PE. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22(2):486–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Matsuda S, Wen T-C, Morita F, Otsuka H, Igase K, Yoshimura H, Sakanaka M. Interleukin-6 prevents ischemia-induced learning disability and neuronal and synaptic loss in gerbils. Neurosci Lett. 1996;204(1–2):109–12.

    CAS  PubMed  Google Scholar 

  232. Gerber J, Böttcher T, Hahn M, Siemer A, Bunkowski S, Nau R. Increased mortality and spatial memory deficits in TNF-α-deficient mice in ceftriaxone-treated experimental pneumococcal meningitis. Neurobiol Dis. 2004;16(1):133–8.

    CAS  PubMed  Google Scholar 

  233. Cheng R, Xu W, Wang J, Tang Z, Zhang M. The outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates the depression-like behavior of depressed mice induced by chronic stress. Biochem Biophys Res Commun. 2021;566:170–6.

    CAS  PubMed  Google Scholar 

  234. Wang J, Xu W, Wang R, Cheng R, Tang Z, Zhang M. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling. Food Funct. 2021;12(8):3597–610.

    PubMed  Google Scholar 

  235. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8:430.

    PubMed  PubMed Central  Google Scholar 

  236. Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol. 2017;8:319.

    PubMed  PubMed Central  Google Scholar 

  237. Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2020;11(3):285–304.

    PubMed  Google Scholar 

  238. Snyder C, Kream RM, Ptacek R, Stefano GB. Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access. 2015;5:2.

    Google Scholar 

  239. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci. 2018;12:386.

    PubMed  PubMed Central  Google Scholar 

  240. Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro. 2010;2(5):AN20100019.

    Google Scholar 

  241. Filiou MD, Sandi C. Anxiety and brain mitochondria: a bidirectional crosstalk. Trends Neurosci. 2019;42(9):573–88.

    CAS  PubMed  Google Scholar 

  242. Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis. 2018;41(4):585–96.

    CAS  PubMed  Google Scholar 

  243. Quiroz JA, Gray NA, Kato T, Manji HK. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2008;33(11):2551–65.

    CAS  PubMed  Google Scholar 

  244. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721–33.

    CAS  PubMed  Google Scholar 

  245. Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, De Cabo R, Mattson MP. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. NeuroMolecular Med. 2006;8(3):389–413.

    CAS  PubMed  Google Scholar 

  246. Mattson MP, Partin J. Evidence for mitochondrial control of neuronal polarity. J Neurosci Res. 1999;56(1):8–20.

    CAS  PubMed  Google Scholar 

  247. Su B, Ji Y-S, Sun X-L, Liu X-H, Chen Z-Y. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem. 2014;289(3):1213–26.

    CAS  PubMed  Google Scholar 

  248. Fu Y, Zhen J, Lu Z. Synergetic neuroprotective effect of docosahexaenoic acid and aspirin in SH-Y5Y by inhibiting miR-21 and activating RXRα and PPARα. DNA Cell Biol. 2017;36(6):482–9.

    CAS  PubMed  Google Scholar 

  249. Kariharan T, Nanayakkara G, Parameshwaran K, Bagasrawala I, Ahuja M, Abdel-Rahman E, Amin AT, Dhanasekaran M, Suppiramaniam V, Amin RH. Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol Aging. 2015;36(3):1451–61.

    CAS  PubMed  Google Scholar 

  250. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu X-Y. Role of the adipose PPARγ-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry. 2017;22(7):1056–68.

    CAS  PubMed  Google Scholar 

  251. Rudko OI, Tretiakov AV, Naumova EA, Klimov EA. Role of PPARs in progression of anxiety: literature analysis and signaling pathways reconstruction. PPAR Res. 2020;2020:8859017.

    PubMed  PubMed Central  Google Scholar 

  252. Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med. 2016;100:153–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Loupy KM, Cler KE, Marquart BM, Yifru TW, D’Angelo HM, Arnold MR, Elsayed AI, Gebert MJ, Fierer N, Fonken LK, et al. Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun. 2021;91:212–29.

    CAS  PubMed  Google Scholar 

  254. Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C. A novel prebiotic blend product prevents irritable bowel syndrome in mice by improving gut microbiota and modulating immune response. Nutrients. 2017;9(12):1341.

    PubMed Central  Google Scholar 

  255. Hsieh F-C, Lee C-L, Chai C-Y, Chen W-T, Lu Y-C, Wu C-S. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab. 2013;10(1):1–14.

    Google Scholar 

  256. Wagnerberger S, Spruss A, Kanuri G, Stahl C, Schröder M, Vetter W, Bischoff SC, Bergheim I. Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model. J Nutr Biochem. 2013;24(3):531–8.

    CAS  PubMed  Google Scholar 

  257. Norris GT, Kipnis J. Immune cells and CNS physiology: microglia and beyond. J Exp Med. 2019;216(1):60–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol. 2020;38:597–620.

    CAS  PubMed  Google Scholar 

  259. Kipnis J. Multifaceted interactions between adaptive immunity and the central nervous system. Science. 2016;353(6301):766–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, Overall CC, Gadani SP, Turner SD, Weng Z, et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature. 2016;535(7612):425–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Jiang H-Y, Zhang X, Yu Z-H, Zhang Z, Deng M, Zhao J-H, Ruan B. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130–6.

    PubMed  Google Scholar 

  262. Chen Y-H, Bai J, Wu D, Yu S-F, Qiang X-L, Bai H, Wang H-N, Peng Z-W. Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J Affect Disord. 2019;259:56–66.

    CAS  PubMed  Google Scholar 

  263. Mason BL, Li Q, Minhajuddin A, Czysz AH, Coughlin LA, Hussain SK, Koh AY, Trivedi MH. Reduced anti-inflammatory gut microbiota are associated with depression and anhedonia. J Affect Disord. 2020;266:394–401.

    CAS  PubMed  Google Scholar 

  264. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    PubMed  Google Scholar 

  265. Huang Y, Shi X, Li Z, Shen Y, Shi X, Wang L, Li G, Yuan Y, Wang J, Zhang Y, et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:3329.

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, Lv H, Guo X, Dong K, Zhu Y, et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord. 2017;207:300–4.

    PubMed  Google Scholar 

  267. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, Koga N, Hattori K, Kunugi H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.

    PubMed  Google Scholar 

  268. Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.

    PubMed  Google Scholar 

  269. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–96.

    CAS  PubMed  Google Scholar 

  270. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.

    CAS  PubMed  Google Scholar 

  271. Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, Sun Z, Chen X, Zhang G, Zhang H, et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 2020;6(49):eaba8555.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Hemmings SM, Malan-Muller S, van den Heuvel LL, Demmitt BA, Stanislawski MA, Smith DG, Bohr AD, Stamper CE, Hyde ER, Morton JT, et al. The microbiome in posttraumatic stress disorder and trauma-exposed controls: an exploratory study. Psychosom Med. 2017;79(8):936.

    PubMed  PubMed Central  Google Scholar 

  273. Bajaj JS, Sikaroodi M, Fagan A, Heuman D, Gilles H, Gavis EA, Fuchs M, Gonzalez-Maeso J, Nizam S, Gillevet PM, et al. Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. Am J Physiol Gastrointest Liv Physiol. 2019;317(5):G661–9.

    CAS  Google Scholar 

  274. Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW, Feinstein JS, Feusner JD, Garfinkel SN, Lane RD, Mehling WE, et al. Interoception and mental health: a roadmap. Biologic Psychiatry: Cogn Neurosci Neuroimag. 2018;3(6):501–13.

    Google Scholar 

  275. Craig AD. How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.

    CAS  PubMed  Google Scholar 

  276. Janig W. Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol. 1996;42(1–2):29–51.

    CAS  PubMed  Google Scholar 

  277. Schulz A, Vögele C. Interoception and stress. Front Psychol. 2015;6:993.

    PubMed  PubMed Central  Google Scholar 

  278. Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N, Gupta A, Acosta J, Luna RA, Aagaard K, Versalovic J, et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome. 2017;5(1):1–17.

    Google Scholar 

  279. Mayer EA, Labus JS, Tillisch K, Cole SW, Baldi P. Towards a systems view of IBS. Nat Rev Gastroenterol Hepatol. 2015;12(10):592.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, Tillisch K. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain. 2013;154(9):1528–41.

    PubMed  PubMed Central  Google Scholar 

  281. Labus JS, Dinov ID, Jiang Z, Ashe-McNalley C, Zamanyan A, Shi Y, Hong J-Y, Gupta A, Tillisch K, Ebrat B, et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain. 2014;155(1):137–49.

    PubMed  Google Scholar 

  282. Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain? Eur J Pain. 2019;23(2):203–19.

    PubMed  Google Scholar 

  283. Nolan CL, Moore GJ, Madden R, Farchione T, Bartoi M, Lorch E, Stewart CM, Rosenberg DR. Prefrontal cortical volume in childhood-onset major depression: preliminary findings. Arch Gen Psychiatry. 2002;59(2):173–9.

    PubMed  Google Scholar 

  284. Vasic N, Walter H, Höse A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109(1–2):107–16.

    PubMed  Google Scholar 

  285. Hanusch K-U, Janssen CH, Billheimer D, Jenkins I, Spurgeon E, Lowry CA, Raison CL. Whole-body hyperthermia for the treatment of major depression: associations with thermoregulatory cooling. Am J Psychiatr. 2013;170(7):802–4.

    PubMed  Google Scholar 

  286. Janssen CW, Lowry CA, Mehl MR, Allen JJ, Kelly KL, Gartner DE, Medrano A, Begay TK, Rentscher K, White JJ, et al. Whole-body hyperthermia for the treatment of major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(8):789–95.

    PubMed  Google Scholar 

  287. Lowry C, Flux M, Raison C. Whole-body heating: an emerging therapeutic approach to treatment of major depressive disorder. Focus. 2018;16(3):259–65.

    PubMed  PubMed Central  Google Scholar 

  288. Raison CL, Hale MW, Williams L, Wager TD, Lowry CA. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol. 2015;5:1580.

    PubMed  PubMed Central  Google Scholar 

  289. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401.

    CAS  PubMed  Google Scholar 

  290. Kong J, Fang J, Park J, Li S, Rong P. Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry. 2018;9:20.

    PubMed  PubMed Central  Google Scholar 

  291. Shiozawa P, da Silva ME, Netto GTM, Taiar I, Cordeiro Q. Effect of a 10-day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: a phase II, sham-controlled, randomized clinical trial. Epilepsy Behav. 2015;44:23–6.

    PubMed  Google Scholar 

  292. Wang F, Wu X, Gao J, Li Y, Zhu Y, Fang Y. The relationship of olfactory function and clinical traits in major depressive disorder. Behav Brain Res. 2020;386:112594.

    PubMed  Google Scholar 

  293. Osadchiy V, Labus JS, Gupta A, Jacobs J, Ashe-McNalley C, Hsiao EY, Mayer EA. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS One. 2018;13(8):e0201772.

    PubMed  PubMed Central  Google Scholar 

  294. Kaur H, Bose C, Mande SS. Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Front Neurosci. 2019;13:1365.

    PubMed  PubMed Central  Google Scholar 

  295. Mavridis I. The role of the nucleus accumbens in psychiatric disorders. Psychiatrike. 2015;25(4):282–94.

    CAS  PubMed  Google Scholar 

  296. Hou R, Garner M, Holmes C, Osmond C, Teeling J, Lau L, Baldwin DS. Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: case-controlled study. Brain Behav Immun. 2017;62:212–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Zou W, Feng R, Yang Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naive patients with major depression. PLoS One. 2018;13(6):e0197267.

    PubMed  PubMed Central  Google Scholar 

  298. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, Ayala AR, Licinio J, Gold HK, Kling MA, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90(5):2522–30.

    CAS  PubMed  Google Scholar 

  299. Younger W, Chen T-J, Hong C-J, Chen H-M, Tsai S-J. Association study of the interleukin-1beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology. 2003;28(6):1182–5.

    Google Scholar 

  300. Kéri S, Szabó C, Kelemen O. Expression of toll-like receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav Immun. 2014;40:235–43.

    PubMed  Google Scholar 

  301. Gimeno D, Kivimäki M, Brunner EJ, Elovainio M, De Vogli R, Steptoe A, Kumari M, Lowe GD, Rumley A, Marmot MG, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–23.

    CAS  PubMed  Google Scholar 

  302. Kivimaki M, Shipley M, Batty GD, Hamer M, Akbaraly T, Kumari M, Jokela M, Virtanen M, Lowe G, Ebmeier K, et al. Long-term inflammation increases risk of common mental disorder: a cohort study. Mol Psychiatry. 2014;19(2):149–50.

    CAS  PubMed  Google Scholar 

  303. Chu AL, Stochl J, Lewis G, Zammit S, Jones PB, Khandaker GM. Longitudinal association between inflammatory markers and specific symptoms of depression in a prospective birth cohort. Brain Behav Immun. 2019;76:74–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiat. 2014;71(10):1121–8.

    Google Scholar 

  305. Wang W, Wang L, Xu H, Cao C, Liu P, Luo S, Duan Q, Ellenbroek B, Zhang X. Characteristics of pro-and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. J Affect Disord. 2019;248:52–8.

    CAS  PubMed  Google Scholar 

  306. Lindqvist D, Wolkowitz OM, Mellon S, Yehuda R, Flory JD, HennHaase C, Bierer LM, Abu-Amara D, Coy M, Neylan TC, et al. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav Immun. 2014;42:81–8.

    PubMed  Google Scholar 

  307. Gola H, Engler H, Sommershof A, Adenauer H, Kolassa S, Schedlowski M, Groettrup M, Elbert T, Kolassa I-T. Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry. 2013;13(1):1–8.

    Google Scholar 

  308. Haroon E, Fleischer C, Felger JC, Chen X, Woolwine BJ, Patel T, Hu XP, Miller AH. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. 2016;21(10):1351–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Haroon E, Miller AH. Inflammation effects on brain glutamate in depression: mechanistic considerations and treatment implications. Curr Top Behav Neurosci. 2017;31:173–98.

    PubMed  Google Scholar 

  310. Haroon E, Woolwine BJ, Chen X, Pace TW, Parekh S, Spivey JR, Hu XP, Miller AH. IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology. 2014;39(7):1777–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Pervanidou P, Kolaitis G, Charitaki S, Margeli A, Ferentinos S, Bakoula C, Lazaropoulou C, Papassotiriou I, Tsiantis J, Chrousos GP. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology. 2007;32(8–10):991–9.

    CAS  PubMed  Google Scholar 

  312. Ober C, Sperling AI, von Mutius E, Vercelli D. Immune development and environment: lessons from Amish and Hutterite children. Curr Opin Immunol. 2017;48:51–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010;10(12):861–8.

    Google Scholar 

  314. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601.

    PubMed  PubMed Central  Google Scholar 

  315. Boscarino JA, Chang J. Higher abnormal leukocyte and lymphocyte counts 20 years after exposure to severe stress: research and clinical implications. Psychosom Med. 1999;61(3):378–86.

    CAS  PubMed  Google Scholar 

  316. Rapaport MH. Circulating lymphocyte phenotypic surface markers in anxiety disorder patients and normal volunteers. Biol Psychiatry. 1998;43(6):458–63.

    CAS  PubMed  Google Scholar 

  317. Ekinci O, Ekinci A. The connections among suicidal behavior, lipid profile and low-grade inflammation in patients with major depressive disorder: a specific relationship with the neutrophil-to-lymphocyte ratio. Nordic J Psychiatry. 2017;71(8):574–80.

    Google Scholar 

  318. Schleifer SJ, Keller SE, Meyerson AT, Raskin MJ, Davis KL, Stein M. Lymphocyte function in major depressive disorder. Arch Gen Psychiatry. 1984;41(5):484–6.

    CAS  PubMed  Google Scholar 

  319. Turner CA, Thompson RC, Bunney WE, Schatzberg AF, Barchas JD, Myers RM, Akil H, Watson SJ. Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci. 2014;8:238.

    PubMed  PubMed Central  Google Scholar 

  320. Lizano P, Lutz O, Ling G, Lee AM, Eum S, Bishop JR, Kelly S, Pasternak O, Clementz B, Pearlson G, et al. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. Am J Psychiatr. 2019;176(7):564–72.

    PubMed  Google Scholar 

  321. Schiweck C, Valles-Colomer M, Arolt V, Müller N, Raes J, Wijkhuijs A, Claes S, Drexhage H, Vrieze E. Depression and suicidality: a link to premature T helper cell aging and increased Th17 cells. Brain Behav Immun. 2020;87:603–9.

    CAS  PubMed  Google Scholar 

  322. Patel JP, Frey BN. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder? Neural Plasticity. 2015;2015:708306.

    PubMed  PubMed Central  Google Scholar 

  323. Barbáchano A, Fernández-Barral A, Ferrer-Mayorga G, Costales-Carrera A, Larriba MJ, Munõz A. The endocrine vitamin D system in the gut. Mol Cell Endocrinol. 2017;453:79–87.

    PubMed  Google Scholar 

  324. Su D, Nie Y, Zhu A, Chen Z, Wu P, Zhang L, Luo M, Sun Q, Cai L, Lai Y, et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front Physiol. 2016;7:498.

    PubMed  PubMed Central  Google Scholar 

  325. Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(7):2944–51.

    CAS  PubMed  Google Scholar 

  326. Amirani E, Milajerdi A, Mirzaei H, Jamilian H, Mansournia MA, Hallajzadeh J, Ghaderi A. The effects of probiotic supplementation on mental health, biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020;49:102361.

    PubMed  Google Scholar 

  327. Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: a randomized, placebo-controlled trial. Biomark Insights. 2015;10:BMI–S22007.

    Google Scholar 

  328. Brenner LA, Forster JE, Stearns-Yoder KA, Stamper CE, Hoisington AJ, Brostow DP, Mealer M, Wortzel HS, Postolache TT, Lowry CA. Evaluation of an immunomodulatory probiotic intervention for Veterans with co-occurring mild traumatic brain injury and posttraumatic stress disorder: a pilot study. Front Neurol. 2020;11:1015.

    PubMed  PubMed Central  Google Scholar 

  329. Lee SO, Kim CS, Cho SK, Choi HJ, Ji GE, Oh D-K. Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol Lett. 2003;25(12):935–8.

    CAS  PubMed  Google Scholar 

  330. Browne PD, Bolte AC, Besseling-van der Vaart I, Claassen E, de Weerth C. Probiotics as a treatment for prenatal maternal anxiety and depression: a double-blind randomized pilot trial. Sci Rep. 2021;11(1):1–16.

    Google Scholar 

  331. Wallace CJ, Milev RV. The efficacy, safety, and tolerability of probiotics on depression: clinical results from an open-label pilot study. Front Psychiatry. 2021;12:132.

    Google Scholar 

  332. Eskandarzadeh S, Effatpanah M, Khosravi-Darani K, Askari R, Hosseini AF, Reisian M, Jazayeri S. Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: a double blind, randomized, placebo-controlled trial. Nutr Neurosci. 2021;24(2):102–8.

    CAS  PubMed  Google Scholar 

  333. Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry. 2017;51(8):810–21.

    PubMed  PubMed Central  Google Scholar 

  334. Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, Szulc A. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–22.

    CAS  PubMed  Google Scholar 

  335. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, Memarzadeh MR, Asemi Z, Esmaillzadeh A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition. 2016;32(3):315–20.

    CAS  PubMed  Google Scholar 

  336. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr. 2019;38(2):522–8.

    CAS  PubMed  Google Scholar 

  337. Miyaoka T, Kanayama M, Wake R, Hashioka S, Hayashida M, Nagahama M, Okazaki S, Yamashita S, Miura S, Miki H, et al. Clostridium butyricum miyairi 588 as adjunctive therapy for treatment-resistant major depressive disorder: a prospective openlabel trial. Clin Neuropharmacol. 2018;41(5):151–5.

    CAS  PubMed  Google Scholar 

  338. Reininghaus EZ, Platzer M, Kohlhammer-Dohr A, Hamm C, Mörkl S, Bengesser SA, Fellendorf FT, Lahousen-Luxenberger T, LeitnerAfschar B, Schöggl H, et al. PROVIT: supplementary probiotic treatment and vitamin B7 in depression—a randomized controlled trial. Nutrients. 2020;12(11):3422.

    CAS  PubMed Central  Google Scholar 

  339. Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, Marmar CR, Weiner MW, Schuff N, Neylan TC. Hippocampal volume differences in Gulf War Veterans with current versus lifetime posttraumatic stress disorder symptoms. Biol Psychiatry. 2011;69(6):541–8.

    PubMed  Google Scholar 

  340. Revest J, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza P, Abrous D. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. 2009;14(10):959–67.

    PubMed  Google Scholar 

  341. Frodl T, Jäger M, Smajstrlova I, Born C, Bottlender R, Palladino T, Reiser M, Möller H-J, Meisenzahl EM. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci. 2008;33(5):423.

    PubMed  PubMed Central  Google Scholar 

  342. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008;64(10):880–3.

    PubMed  Google Scholar 

  343. Shapira-Lichter I, Beilin B, Ofek K, Bessler H, Gruberger M, Shavit Y, Seror D, Grinevich G, Posner E, Reichenberg A, et al. Cytokines and cholinergic signals co-modulate surgical stress-induced changes in mood and memory. Brain Behav Immun. 2008;22(3):388–98.

    CAS  PubMed  Google Scholar 

  344. Haghighat N, Rajabi S, Mohammadshahi M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: a randomized, double-blinded, clinical trial. Nutr Neurosci. 2019;24:490–9.

    PubMed  Google Scholar 

  345. Rook GA, Adams V, Hunt J, Palmer R, Martinelli R, Brunet LR. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol. 2004;25(3):237–55.

    CAS  PubMed  Google Scholar 

  346. Ahmadizar F, Vijverberg SJ, Arets HG, de Boer A, Lang JE, Garssen J, Kraneveld A, Maitland-van der Zee AH. Early-life antibiotic exposure increases the risk of developing allergic symptoms later in life: a meta-analysis. Allergy. 2018;73(5):971–86.

    CAS  PubMed  Google Scholar 

  347. Azad MB, Konya T, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. Impact of cesarean section delivery and breastfeeding on infant gut microbiota at one year of age. Allergy, Asthma Clin Immunol. 2014;10(1):1–2.

    Google Scholar 

  348. Reyman M, van Houten MA, van Baarle D, Bosch AA, Man WH, Chu MLJ, Arp K, Watson RL, Sanders EA, Fuentes S, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10(1):1–12.

    CAS  Google Scholar 

  349. O’Brien CE, Meier AK, Cernioglo K, Mitchell RD, Casaburi G, Frese SA, Henrick BM, Underwood MA, Smilowitz JT. Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year. Pediatr Res. 2021:1–10.

    Google Scholar 

  350. Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy J-M, Dequenne I, de Timary P, Cani PD. How probiotics affect the microbiota. Front Cell Infect Microbiol. 2020;9:454.

    PubMed  PubMed Central  Google Scholar 

  351. Tolstoy L. Anna Karenina. London: Yale University Press; 2014.

    Google Scholar 

  352. Zaneveld JR, McMinds R, Thurber RV. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2(9):1–8.

    Google Scholar 

  353. Ilan Y. Why targeting the microbiome is not so successful: can randomness overcome the adaptation that occurs following gut manipulation? Clin Exp Gastroenterol. 2019;12:209.

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Konopka A. What is microbial community ecology? ISME J. 2009;3(11):1223–30.

    PubMed  Google Scholar 

  355. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24(5):402–13.

    CAS  PubMed  Google Scholar 

  356. Bastiaanssen TF, Gururajan A, van de Wouw M, Moloney GM, Ritz NL, Long-Smith CM, Wiley NC, Murphy AB, Lyte JM, Fouhy F, et al. Volatility as a concept to understand the impact of stress on the microbiome. Psychoneuroendocrinology. 2021;124:105047.

    CAS  PubMed  Google Scholar 

  357. Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. J Expos Sci Environ Epidemiol. 2020;30(2):219–35.

    Google Scholar 

  358. Sharma A, Richardson M, Cralle L, Stamper CE, Maestre JP, StearnsYoder KA, Postolache TT, Bates KL, Kinney KA, Brenner LA, et al. Longitudinal homogenization of the microbiome between both occupants and the built environment in a cohort of United States Air Force Cadets. Microbiome. 2019;7(1):1–17.

    CAS  Google Scholar 

  359. Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv. 2020;6(42):eaba2578.

    CAS  PubMed  PubMed Central  Google Scholar 

  360. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, et al. American Gut: an open platform for citizen science microbiome research. mSystems. 2018;3(3):e00031.

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Masana MF, Tyrovolas S, Kollia N, Chrysohoou C, Skoumas J, Haro JM, Tousoulis D, Papageorgiou C, Pitsavos C, Panagiotakos DB. Dietary patterns and their association with anxiety symptoms among older adults: the ATTICA study. Nutrients. 2019;11(6):1250.

    Google Scholar 

  362. Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O’Reilly SL, Nicholson GC, Kotowicz MA, Berk M. Association of western and traditional diets with depression and anxiety in women. Am J Psychiatr. 2010;167(3):305–11.

    PubMed  Google Scholar 

  363. Westover AN, Marangell LB. A cross-national relationship between sugar consumption and major depression? Depress Anxiety. 2002;16(3):118–20.

    PubMed  Google Scholar 

  364. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol. 2013;74(4):580–91.

    PubMed  Google Scholar 

  365. Lassale C, Batty GD, Baghdadli A, Jacka F, Sánchez-Villegas A, Kivimäki M, Akbaraly T. Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019;24(7):965–86.

    PubMed  Google Scholar 

  366. van den Berk-Clark C, Secrest S, Walls J, Hallberg E, Lustman PJ, Schneider FD, Scherrer JF. Association between posttraumatic stress disorder and lack of exercise, poor diet, obesity, and co-occurring smoking: a systematic review and meta-analysis. Health Psychol. 2018;37(5):407.

    PubMed  PubMed Central  Google Scholar 

  367. Kim Y, Roberts AL, Rimm EB, Chibnik LB, Tworoger SS, Nishimi KM, Sumner JA, Koenen KC, Kubzansky LD. Posttraumatic stress disorder and changes in diet quality over 20 years among US women. Psychol Med. 2021;51(2):310–9.

    PubMed  Google Scholar 

  368. Cotillard A, Chaumont S, Saccareau M, Litwin NS, Lopez DG, Tap J, Lejzerowicz F, Demaretz L, McDonald D, Song SJ, et al. Unsupervised diet partitions better explain variations of the gut microbiome compared to individual dietary markers in US adults of the American Gut Project cohort. Curr Dev Nutr. 2021;5(Suppl 2):397.

    PubMed Central  Google Scholar 

  369. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Students PMC, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25(6):789–802.

    CAS  PubMed  Google Scholar 

  370. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, Leeming E, Gibson R, Le Roy C, Al Khatib H, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  371. Menni C, Louca P, Berry SE, Vijay A, Astbury S, Leeming ER, Gibson R, Asnicar F, Piccinno G, Wolf J, et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med. 2021;19(1):1–10.

    Google Scholar 

  372. Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587(7834):448–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  373. Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, Giampieri E, Jennings A, Candela M, Turroni S, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NUAGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218–28.

    CAS  PubMed  Google Scholar 

  374. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    CAS  PubMed  Google Scholar 

  375. Francis HM, Stevenson RJ, Chambers JR, Gupta D, Newey B, Lim CK. A brief diet intervention can reduce symptoms of depression in young adults–a randomised controlled trial. PLoS One. 2019;14(10):e0222768.

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Firth J, Marx W, Dash S, Carney R, Teasdale SB, Solmi M, Stubbs B, Schuch FB, Carvalho AF, Jacka F, et al. The effects of dietary improvement on symptoms of depression and anxiety: a meta-analysis of randomized controlled trials. Psychosom Med. 2019;81(3):265.

    PubMed  PubMed Central  Google Scholar 

  377. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.

    PubMed  PubMed Central  Google Scholar 

  378. Lin H, Peddada SD. Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ Biofilms Microbiomes. 2020;6(1):1–13.

    Google Scholar 

  379. Quinn TP, Gordon-Rodriguez E, Erb I. A critique of differential abundance analysis, and advocacy for an alternative. arXiv. 2021:2104.07266.

    Google Scholar 

  380. Schoenfeld JD, Ioannidis JP. Is everything we eat associated with cancer? a systematic cookbook review. Am J Clin Nutr. 2013;97(1):127–34.

    CAS  PubMed  Google Scholar 

  381. Vehlow C, Kao DP, Bristow MR, Hunter LE, Weiskopf D, Görg C. Visual analysis of biological data-knowledge networks. BMC Bioinformatics. 2015;16(1):1–15.

    Google Scholar 

  382. Mabwi HA, Kim E, Song D-G, Yoon HS, Pan C-H, Komba EV, Ko G, Cha KH. Synthetic gut microbiome: advances and challenges. Comput Struct Biotechnol J. 2020;19:363.

    PubMed  PubMed Central  Google Scholar 

  383. Chao L, Liu C, Sutthawongwadee S, Li Y, Lv W, Chen W, Yu L, Zhou J, Guo A, Li Z, et al. Effects of probiotics on depressive or anxiety variables in healthy participants under stress conditions or with a depressive or anxiety diagnosis: a meta-analysis of randomized controlled trials. Front Neurol. 2020;11:421.

    PubMed  PubMed Central  Google Scholar 

  384. Desai V, Kozyrskyj AL, Lau S, Sanni O, Dennett L, Walter J, Ospina MB. Effectiveness of probiotic, prebiotic, and synbiotic supplementation to improve perinatal mental health in mothers: a systematic review and meta-analysis. Front Psychiatry. 2021;12:622181.

    PubMed  PubMed Central  Google Scholar 

  385. Liu B, He Y, Wang M, Liu J, Ju Y, Zhang Y, Liu T, Li L, Li Q. Efficacy of probiotics on anxiety—a meta-analysis of randomized controlled trials. Depress Anxiety. 2018;35(10):935–45.

    PubMed  Google Scholar 

  386. Nikolova V, Zaidi SY, Young AH, Cleare AJ, Stone JM. Gut feeling: randomized controlled trials of probiotics for the treatment of clinical depression: systematic review and meta-analysis. Therapeut Adv Psychopharmacol. 2019;9:2045125319859963.

    Google Scholar 

  387. Noonan S, Zaveri M, Macaninch E, Martyn K. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prevent Health. 2020;3:351. https://doi.org/10.1136/bmjnph-2019-000053.

    Article  Google Scholar 

  388. Zhang N, Zhang Y, Li M, Wang W, Liu Z, Xi C, Huang X, Liu J, Huang J, Tian D, et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta-analysis based on randomized controlled trials. Brain Behav. 2020;10(9):e01699.

    PubMed  PubMed Central  Google Scholar 

  389. Reis DJ, Ilardi SS, Punt SE. The anxiolytic effect of probiotics: a systematic review and meta-analysis of the clinical and preclinical literature. PLoS One. 2018;13(6):e0199041.

    PubMed  PubMed Central  Google Scholar 

  390. Nurminen N, Lin J, Grönroos M, Puhakka R, Kramna L, Vari HK, Viskari H, Oikarinen S, Roslund M, Parajuli A, et al. Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiol. 2018;13(07):737–44.

    CAS  PubMed  Google Scholar 

  391. Ishaq SL, Rapp M, Byerly R, McClellan LS, O’Boyle MR, Nykanen A, Fuller PJ, Aas C, Stone JM, Killpatrick S, et al. Framing the discussion of microorganisms as a facet of social equity in human health. PLoS Biol. 2019;17(11):e3000536.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Christopher A. Lowry is supported by the National Center for Complementary and Integrative Health (grant numbers R01AT010005 and R41AT011390), the Colorado Office of Economic Development and International Trade (OEDIT) Advanced Industries Accelerator Program (grant number CTGG1-2020-3064), and the Department of the Navy, Office of Naval Research Multidisciplinary University Research Initiative (MURI) Award (grant number N00014-15-1-2809).

Compliance with Ethical Standards

The article does not contain any studies with human participants performed by the authors.

Conflict of Interest Statement

C.A.L. serves on the Scientific Advisory Board of Immodulon Therapeutics, Ltd., is cofounder and chief scientific officer of Mycobacteria Therapeutics Corporation, and is a member of the faculty of the Integrative Psychiatry Institute, Boulder, Colorado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Lowry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sterrett, J.D., Andersen, N.D., Lowry, C.A. (2022). The Influence of the Microbiota on Brain Structure and Function: Implications for Stress-Related Neuropsychiatric Disorders. In: Rook, G.A.W., Lowry, C.A. (eds) Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis. Progress in Inflammation Research, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-91051-8_10

Download citation

Publish with us

Policies and ethics