Skip to main content

Genomic Designing for Biotic Stress Resistance in Grasspea

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Pulse Crops

Abstract

Grasspea (Lathyrus sativus L.) is a cool-season legume crop with a broad range of genetic diversity prevalent across the continents. Grasspea is an underutilized source of calories and protein for populations residing in areas with frequent droughts and marginal areas of Asia, Africa and in few pockets of Australia. It is a viable crop option for agro-ecosystems, where successful cultivation of major crop species is difficult especially under the changing scenario of climate change. The major constraint in grasspea production is a neurotoxin known as β-N-oxalyl-l-α,β-diaminopropionic acid known as (β-ODAP) causing neurolathyrism, a neurotoxic disease in humans, thus making it unfit for the human consumption. The strategic reduction of ODAP through genetic manipulation is the sole option to obtain the benefits of this “orphan crop”. Lathyrus genetic resources in large ex situ collections have been done in various gene banks of the world by undertaking collection, conservation, evaluation, characterization and utilization. It has found that no significant efforts have been made for alien gene transfer in grasspea, in spite of a large number of wild relatives with useful traits. The grasspea is well-adapted to a number of biotic stresses but yet incur considerable yield losses of approx. 15–25%. Till date, negligible genetic resources have been exploited to develop grasspea genotype resistant against biotic stresses viz. diseases and pests. Foliar diseases are predominantly responsible for the substantial yield loss. This chapter reviews the present status of genomic resources of grasspea and their use in developing biotic stress resistant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Moneim AM, Dorrestein B, Baum M, Ryan J, Bejiga G (2001) Role of ICARDA in improving the nutritional quality and yield potential of grasspea (Lathyrus sativus L.), for subsistence farmers in dry areas. Lathyrus Lathyrism Newsl 2:55–58

    Google Scholar 

  • Abd El-Moneim AM, Cocks PS (1993) Adaptation and yield stability of selected lines of Lathyrus spp. under rainfed conditions in West Asia. Euphytica 66:89–97

    Google Scholar 

  • Allkin R, Goyder DJ, Bisby FA, White RJ (1983) List of species and subspecies in the Vicieae. Vicieae Database Proj 1:4–11

    Google Scholar 

  • Allkin R, Goyder DJ, Bisby FA, White RJ (1986) Names and synonyms of species and subspecies in the Vicieae. Vicieae Database Proj 7:1–75

    Google Scholar 

  • Almeida NF, Leitão ST, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2012) Differential expression in Lathyrus sativus and Lathyrus cicera transcriptomes in response to rust (Uromycespisi) infection. In: Proceedings of the VI international conference on legume genetics and genomics (VI ICLGG), Hyderabad, India, 2–7 October 2012, p 271

    Google Scholar 

  • Almeida NF, Leitão ST, Caminero C, Torres AM, Rubiales D, VazPatto MC (2013a) Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Mol Biol Rep 41:269–283

    PubMed  Google Scholar 

  • Almeida NF, Leitão ST, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2013) Transcriptional profiling of grass pea genes differentially regulated in response to infection with Ascochyta pisi. In: Proceedings of the first legume society conference 2013: a legume odyssey, Novi Sad, Serbia, 9–11 May 2013, p 140

    Google Scholar 

  • Almeida NF, Leitão ST, Krezdorn N, Rotter B, Winter P, Rubiales D et al (2014) Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biol 14:376

    PubMed  PubMed Central  Google Scholar 

  • Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK et al (2009) Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 10:415

    PubMed  PubMed Central  Google Scholar 

  • Asthana AN, Dixit GP (1998) Utilization of genetic resources in Lathyrus. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Pro IPGRI-ICARDA ICAR Regional Working Group Meeting, New Delhi, India, pp 64–70

    Google Scholar 

  • Asthana AN (1995) Grasspea cultivation in problem areas: present approaches. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December, Raipur, India, pp 143–148

    Google Scholar 

  • Baghel SS, Sastri ARS, Geda AK (1995) Lathyrus cultivation in Chhattisgarh region of Central India. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia, International Plant Genetic Resources Institute, Rome, pp 139–142

    Google Scholar 

  • Barea JM, Azćon-Aguilar C, Azćon R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Sci Cambridge, pp 65–77

    Google Scholar 

  • Barilli E, Satovic Z, Sillero JC, Rubiales D, Torres AM (2011) Phylogenetic analysis of Uromyces species infecting grain and forage legumes by sequence analysis of nuclear ribosomal internal transcribed spacer region. J Phytopathol 159:137–145

    CAS  Google Scholar 

  • Barilli E, Moral A, Sillero JC, Rubiales D (2012) Clarification on rust species potentially infecting pea (Pisumsativum L.) crop and host range of Uromycespisi (Pers.) Wint Crop Protec 37:65–70

    Google Scholar 

  • Barrow MV, Simpson CF, Miller EJ (1974) Lathyrism: a review. Q Rev Biol 49:101–128

    CAS  PubMed  Google Scholar 

  • Benková M, Záková M (2001) Evaluation of selected traits in grasspea (Lathyrus sativus L.) genetic resources. Lathyrus Lathyrism Newsl 2:27–30

    Google Scholar 

  • Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya HA (2017) Assessment of genetic diversity in crop plants—an overview. Adv Plants Agric Res 7:279–286

    Google Scholar 

  • Bi HH, Song YY, Zeng RS (2007) Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defense. Allelopath J 29:15–27

    CAS  Google Scholar 

  • Budge EAW (1928) A history of Ethiopia, Nubia and Abyssinia (according to the hieroglyphic inscriptions of Egypt and Nubia, and the Ethiopian chronicles), vol II. Methuen, London

    Google Scholar 

  • Caminero SC, Grajal MI (2009) From a survival food of the poor to a festivity main dish: “titos” (grass pea, Latyrus sativus) in La Gamonal and in Papilla de Abajo (Burgos, Spain). Grain Legum 54:40–41

    Google Scholar 

  • Campbell CG, Mehra RB, Agraval SK, Chen YZ, Abd El-Moneim AM, Khawaja HIT, Yadov CR, Tay JU, Araya WA (1994) Current status and future strategy in breeding of grasspea (Lathyrus sativus). Euphytica 73:167–175

    Google Scholar 

  • Campbell CG (1997) Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops, vol 18. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Chang C, Tian L, Ma L, Li W, Nasir F, Li X et al (2019) Differential responses of molecular mechanisms and physiochemical characters in wild and cultivated soybeans against invasion by the pathogenic Fusarium oxysporum Schltdl. Physiol Plant 166:1008–1025

    CAS  PubMed  Google Scholar 

  • Choi JJ, Alkharouf NW, Schneider KT, Matthews BF, Frederick RD (2008) Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genom 8:341–359

    CAS  Google Scholar 

  • Chowdhury MA, Slinkard AE (1997) Natural outcrossing in grasspea. J Hered 88:154–156

    Google Scholar 

  • Chowdhury MA, Slinkard AE (2000) Genetics of isozymes in grasspea. J Hered 91:142–145

    CAS  PubMed  Google Scholar 

  • Chtourou-Ghorbel N, Lauga B, Combes D, Marrakchi M (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsl 2:62–68

    Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    PubMed  PubMed Central  Google Scholar 

  • Cocks P, Siddique K, Hanbury C (2000) Lathyrus. A new grain legume. A report for the rural industries Research and development corporation. Rural Industries Research & Development Corporation

    Google Scholar 

  • Convention on Biological Diversity (2007) https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf

  • Cook RTA, Fox RTV (1992) Erysiphe pisi var. pisi on faba beans and other legumes in Britain. Plant Pathol 41:506–512

    Google Scholar 

  • De laRosa L, Martín I (2001) Morphological characterisation of Spanish genetic resources of Lathyrus sativus L. Lathyrus Lathyrism Newsl 2:31–34

    Google Scholar 

  • Dixit GP, Parihar AK, Bohra A, Singh NP (2016) Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J 4:407–416. https://doi.org/10.1016/j.cj.2016.06.008

    Article  Google Scholar 

  • Ek M, Eklund M, Post R, Dayteg C, Henriksson T, Weibull P, Ceptilis A, Issac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    CAS  PubMed  Google Scholar 

  • Enneking D (2011) The nutritive value of grasspea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism. Food Chem Toxicol 49:694–709

    CAS  PubMed  Google Scholar 

  • Fikre A, Van Moorhem M, Ahmed S, Lambein F, Gheysen G (2011) Studies on neurolathyrism in Ethiopia: dietary habits, perception of risks and prevention. Food Chem Toxicol 49:678–684

    CAS  PubMed  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopical and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007) Identification and characterisation of sources of resistance to Erysiphepisi Syd. In Pisum spp. Plant Breed 126:113–119

    Google Scholar 

  • Fondevilla S, Chattopadhyay C, Khare N, Rubiales D (2013) Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. Eur J Plant Pathol 136:557–563

    CAS  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea. A review. Agron Sustain Dev. Gatersleben/International Plant Genetic Resources Institute, Rome, Italy 32:401–409

    Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M (2002) Neurolathyrism in Ethiopia: assessment and comparison of knowledge and attitude of health workers and rural inhabitants. Soc Sci Med 54:1513–1524

    PubMed  Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P (2003) Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine. Lancet 362:1808–1810

    PubMed  Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P (2005) Neurolathyrism risk depends on type of grass pea preparation and on mixing with cereals and antioxidants. Trop Med Intl Health 10:169–178

    Google Scholar 

  • Graves H, Rayburn AL, Gonzalezhernandez JL, Nah G, Kim DS, Lee DK (2016) Validating DNA polymorphisms using KASP assay in prairie cordgrass (Spartina pectinata Link) populations in the U.S. Front Plant Sci 6:1271

    Google Scholar 

  • Grela ER, Studzinski T, Matras J (2001) Antinutritional factors in seeds of Lathyrus sativus cultivated in Poland. Lathyrus Lathyrism Newsl 2:101–104

    Google Scholar 

  • Gry J, Rosa E, Rosner H, Andrade I, Gevers E, Hallikainen A, Hedley C, Holm S, Lambein F, Laursen P, Strigl A, Sørensen H, Vidal-Valverde C (1998) NETTOX list of food plants. Danish Veterinary and Food Administration, Søborg

    Google Scholar 

  • Gupta S, Chakraborti D, Rangi RK, Basu D, Das S (2009) A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis. Phytopathology 99:1245–1257

    CAS  PubMed  Google Scholar 

  • Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I. PLoS One 5

    Google Scholar 

  • Gurjar GS, Giri AP, Gupta VS (2012) Gene expression profiling during wilting in chickpea caused by Fusarium oxysporum F. sp. Ciceri. Am J Plant Sci 3:190–201

    CAS  Google Scholar 

  • Gurung AM, Pang ECK, Taylor PWJ (2002) Examination of Pisum and Lathyrus species as sources of ascochyta blight resistance for field pea (Pisum sativum). Aus Plant Pathol 31:41–45

    Google Scholar 

  • Gurung AM, Pang ECK (2011) Lathyrus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, legume crops and forages. Springer, Berlin, pp 117–126

    Google Scholar 

  • Hammett KRW, Murray BG, Markham KR, Hallett IC (1994) Interspecific hybridization between Lathyrus odoratus and L. belinensis. Intl J Plant Sci 155:763–771

    Google Scholar 

  • Hamphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Google Scholar 

  • Hanbury CD, Siddique KHM, Galwey NW, Cocks PS (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 110:445–460

    Google Scholar 

  • Hao X, Yang T, Liu R, Hu J, Yao Y, Burlyaeva M, Wang Y, Ren G, Zhang H, Wang D, Chang J, Zong (2017) An RNA sequencing transcriptome analysis of grasspea (Lathyrus sativus L.) and development of SSR and KASP markers. Front Plant Sci 01873

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121:245–255

    Google Scholar 

  • Hillocks RJ, Maruthi MN (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654

    Google Scholar 

  • Jackson MT, Yunus AG (1984) Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica 33:549–559

    Google Scholar 

  • Kankanala P, Nandety RS, Mysore KS (2019) Genomics of plant disease resistance in legumes. Front Plant Sci 01345

    Google Scholar 

  • Kaul AK, Islam MQ, Hamid A (1986) Screening of Lathyrus germplasm of Bangladesh for BOAA content and some agronomic characters. In: Combes D, Kaul AK (eds) Proceedings of the International Symposium on Lathyrus and Lathyrism. Third World Medical Research Foundation, New York, pp 130–141

    Google Scholar 

  • Khawaja HIT (1988) A new interspecific Lathyrus hybrid to introduce the yellow flower character into sweet pea. Euphytica 37:69–75

    Google Scholar 

  • Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P et al (2013) Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. Plant Genom 6:1–11

    CAS  Google Scholar 

  • Kido EA, Pandolfi V, Houllou-Kido LM, Andrade PP, Marcelino FC, Nepomuceno AL et al (2010) Plant antimicrobial peptides: an overview of SuperSAGE transcriptional profile and a functional review. Curr Protein Pept Sci 11:220–230

    CAS  PubMed  Google Scholar 

  • Kislev ME (1989) Origins of the cultivation of Lathyrus sativus and L. cicero (Fabaceae). Econ Bot 43:262–270

    Google Scholar 

  • Klepadlo M, Chen P, Shi A, Mason RE, Korth KL, Srivastava V (2017) Single nucleotide polymorphism markers for rapid detection of the Rsv4 locus for soybean mosaic virus resistance in diverse germplasm. Mol Breed 37:10

    Google Scholar 

  • Kthiri D, Loladze A, N’Diaye A, Nilsen KT, Walkowiak S, Dreisigacker S, Ammar K, Pozniak CJ (2019) Mapping of genetic loci conferring resistance to leaf rust from three globally resistant durum wheat sources. Front Plant Sci 10:1247

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011) Genetic improvement of grass pea for low neurotoxin (b-ODAP) content. Food Chem Toxicol 49:589–600

    CAS  PubMed  Google Scholar 

  • Kumari V (2001) Field evaluation of grasspea (Lathyrus sativus L.) germplasm for its toxicity in the North-Western hills of India. Lathyrus Lathyrism Newsl 2:82–84

    Google Scholar 

  • Kuo YH, Bau HM, Rozan P, Chowdhury B, Lambein F (2000) Reduction efficiency of the neurotoxin beta-ODAP in low-toxin varieties of Lathyrus sativus seeds by solid state fermentation with Aspergillus oryzae and Rhizopus microsporus var chinensis. J Sci Food Agric 80:2209–2215

    CAS  Google Scholar 

  • Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Royal Botanic Garden. Edinburg 41:209–244

    Google Scholar 

  • Lal MS, Agrawal I, Chitale MW (1986) Genetic improvement of chickling vetch in Madhya Pradesh, India. In: Kaul AK, Combes D (eds) Proceedings of the international symposium on Lathyrus and Lathyrism. Third World Medical Research Foundation, New York, pp 146–160

    Google Scholar 

  • Lambein F, Kuo YH (2009) Lathyrism. Grain Legum 54:8–9

    Google Scholar 

  • Lambein F, Travella S, Kuo YH, Van Montagu M, Heijde M (2019) Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta 250:821–838

    CAS  PubMed  Google Scholar 

  • Lan G, Chen P, Sun Q, Fang S (2013) Methods for treating hemorrhagic conditions. Patent US8362081B2

    Google Scholar 

  • Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP (2015) Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genom16:1089

    Google Scholar 

  • Linke KH, Abd El Moneim AM, Saxena MC (1993) Variation in resistance of some forage legumes species to Orobanche crenata Forsk. Field Crop Res 32:277–285

    Google Scholar 

  • Lister DL, Jones H, Jones MK, O’Sullivan DM, Cockram J (2013) Analysis of DNA polymorphism in ancient barley herbarium material: validation of the KASP SNP genotyping platform. Taxon 62:779–789

    Google Scholar 

  • Llorens J, Soler-Martín C, Saldaña-Ruíz S, Cutillas B, Ambrosio S, Boadas-Vaello P (2011) A new unifying hypothesis for lathyrism, konzo and tropical ataxic neuropathy: nitriles are the causative agents. Food Chem Toxicol 49:563–570

    Google Scholar 

  • Loudon JC, Don G, Wooster D (1855) Loudon’s Encyclopaedia of plants. Longman Brown, Green and Longmans, London

    Google Scholar 

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13648–13663

    Google Scholar 

  • Marghali S, Touati A, Gharbi M, Sdouga D, Trifi-Farah N (2016) Molecular phylogeny of Lathyrus species: insights from sequence-related amplified polymorphism markers. Genet Mol Res15(1):gmr.15017198

    Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379

    CAS  PubMed  Google Scholar 

  • Mehta SL (1997) Plant biotechnology for removal of ODAP from Lathyrus. In: Hainranot RT, Lambein F (eds) Lathyrus and lathyrism, A decade of progress. University of Ghent, Belgium, pp 103–104

    Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    CAS  PubMed  Google Scholar 

  • Mussa A, Million T, Assefa F (2018) Rhizospheric bacterial isolates of grass pea (Lathyrus sativus L.) endowed with multiple plant growth promoting traits. J Appl Microbiol 125:1786–1801

    CAS  Google Scholar 

  • Nimbalkar SB, Harsulkar AM, Giri AP, Sainani MN, Franceschi V, Gupta VS (2006) Differentially expressed gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection. Physiol Mol Plant Pathol 68:176–188

    CAS  Google Scholar 

  • Nosrati H, Hosseinpour-Feizi M-A, Nikniazi M, Razban-Haghighi A (2012) Genetic variation among different accessions of Lathyrus sativus (Fabaceae) revealed by RAPDs. Bot Serbica 36:41–47

    Google Scholar 

  • Palmer VS, Kaul AK, Spencer PS (1989) International network for the improvement of Lathyrus sativus and eradicators of lathyrism (INILSEL): ATWMRF initiative. In: Spencer PS (ed) The grasspea, threat and promise. Third World Medical Research Foundation, New York, NY, USA, pp 219–223

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN, Rastogi N (1995) Status of Lathyrus research in India. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December, Raipur, India, pp 45–52

    Google Scholar 

  • Pandey RL, Sharma RN,Chitale MW (1997) Status of Lathyrus genetic resources in India. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Proceedings of a IPGRI-ICARDA-ICAR regional working group meeting, 8–10 December, New Delhi, India, pp 7–14

    Google Scholar 

  • Pañeda C, Villar AV, Alonso A, Goñi F, Varela F, Brodbeck U, León Y, Varela-Nieto I, Jones D (2001) Purification and characterization of insulin-mimetic inositol phosphoglycan-like molecules from grass pea (Lathyrus sativus) seeds. Mol Med 7:454–460

    Google Scholar 

  • Pang ECK, Croser JS, Imberger KT, McCutchan JS, Taylor PWJ (2000) Tissue culture and protoplast fusion of cool-season pulses: Pea (Pisum sativum L.) and Chickpea (Cicer arietinum L.). Curr Plant Sci Biotechnol Agric 34:429–436

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2015) Gene interactions and genetics for yield and its attributes in grass pea (Lathyrus sativus L.) J Genet 95:947–956

    Google Scholar 

  • Pastor-Cavada E, Juan R, Pastor JE, Girón-Calle J, Alaiz M, Vioque J (2009) Antioxidant activity in Lathyrus species. Grain Legum 51:10–11

    Google Scholar 

  • Patto MCV, Rubiales D (2009) Identification and characterization of partial resistance to rust in a germplasm collection of Lathyrus sativus. Plant Breed 128:95–500

    Google Scholar 

  • Patto MCV, Rubiales D (2014) Resistance to rust and powdery mildew in Lathyruscrops. Czech J Genet Plant Breed 50(2):116–122

    Google Scholar 

  • Patto MCV, Fernández-Aparicio M, Moral A, Rubiales D (2006a) Characterization of resistance to powdery mildew (Erysiphepisi) in a germplasm collection of Lathyrus sativus. Plant Breed 125:308–310

    Google Scholar 

  • Patto MCV, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006b) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Google Scholar 

  • Patto MCV, Fernández-Aparicio M, Moral A, Rubiales D (2007) Resistance reaction to powdery mildew (Erysiphepisi) in a germplasm collection of Lathyrus cicera from Iberian origin. Genet Resour Crop Evol 54:1517–1521

    Google Scholar 

  • Patto MCV, Fernández-Aparicio M, Moral A, Rubiales D (2009) Pre and post haustorial resistance to rusts in Lathyrus cicera. Euphytica 165:27–34

    Google Scholar 

  • Patto MCV, Moral A, Rubiales D (2004) Resistance to powdery mildew and rust fungi in Lathyrusspecies. In: Proceedings of the fifth European conference on grain legumes/2nd international conference on legume genomics and genetics, 7–11 June 2004. AEP, Dijon, France, p 64

    Google Scholar 

  • Patto MCV, Hanbury C, Van Moorhem M, Lambein F, Ochatt S, Rubiales D (2011) Grass pea (Lathyrus sativus L.). In: Perez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes. Science Publishers Inc., Plymouth, pp 151–204

    Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    CAS  PubMed  Google Scholar 

  • Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E et al (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 70:42–67

    Google Scholar 

  • Piergiovanni AR, Damascelli A (2011) L-Homoarginine accumulation in grass pea (Lathyrus sativus L.) dry seeds. A preliminary survey. Food Nutr Sci 2:207–213

    CAS  Google Scholar 

  • Poulter R, Harvey L, Burritt DJ (2003) Qualitative resistance to powdery mildew in hybrid sweet peas. Euphytica 133:349–358

    Google Scholar 

  • Przybylska J, Zimniak-Przybylska Z, Krajewski P (1998) Diversity of seed albumins in the grasspea (Lathyrus sativus L.): an electrophoretic study. Genet Resour Crop Evol 45:423–431

    Google Scholar 

  • Przybylska J, Zimniak-Przybylska Z, Krajewski P (2000) Diversity of seed globulins in Lathyrus sativus L. and some related species. Genet Resour Crop Evol 47:239–246

    Google Scholar 

  • Rahman MM, Kumar J, Rahman MA, Afzal MA (1995) Natural outcrossing in Lathyrus sativus L. Indian J Genet 55:204–220

    Google Scholar 

  • Rahman M, Ali ME, Alam F, Banu MB, Faruk MI, Bhuiyan MAH (2017) Biocontrol of foot and root rot disease of grasspea (Lathyrus sativus) by dual inoculation with Rhizobium and arbuscular mycorrhiza. Bang J Microbiol 34:109–117

    Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    PubMed  Google Scholar 

  • Rao SC, Northup BK (2011) Growth and nutritive value of grass pea in Oklahoma. Agron J 103:1692–1696

    Google Scholar 

  • Robertson LD, Abd El-Moneim AM (1995) Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. Proceedings of a regional workshop, 27–29 December, Raipur, India, pp 97–111

    Google Scholar 

  • Robertson JR, Abd El-Moneim AM (1996) Lathyrus germplasm collection, conservation and utilization for crop improvement at ICARDA. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Proc. regional workshop Lathyrus genetic resources in Asia. Indira Gandhi Agricultural University, Raipur, IPGRI, Office for South Asia, New Delhi, India, pp 97–111

    Google Scholar 

  • Roy PK, Ali K, Gupta A, Barat GK, Mehta SL (1993) β-N-oxalyl-L-α, β-diamino propionic acid in somaclones derived from internode explants of Lathyrus sativus. J Plant Biochem Biotechnol 2:9–13

    CAS  Google Scholar 

  • Rubiales D, Niks RE (1995) Characterization of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis 79:1208–1212

    Google Scholar 

  • Rubiales D, Castillejo MA, Madrid E, Barilli E, Rispail N (2011) Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula. Euphytica 180:89–98

    Google Scholar 

  • Sammour R, Mustafa AEZ, Badr S, Tahr W (2007) Genetic variations in accessions of Lathyrus sativus L. Acta Bot Croat 66(1):1–13

    CAS  Google Scholar 

  • Santha IM, Mehta SL (2001) Development of low ODAP somaclones of Lathyrus sativus. Lathyrus Lathyrism Newsl 2:42

    Google Scholar 

  • Schaefer H, Hechenleitner P, Santos-Guerra A, Menezes de Sequeira M, Pennington RT, Kenicer G, Carine MA (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250

    PubMed  PubMed Central  Google Scholar 

  • Shanmugavadivel PS, Vignesh M, Kokiladevi E (2011) Molecular markers in grasspea breeding—a review. Agric Rev 32:304–330

    Google Scholar 

  • Sharma R, Dewanjee S, Kole C (2016) Utilization of nanoparticles for plant protection. In: Kole C, Sakthi Kumar D, Khodakovskaya MV (eds) Plant nanotechnology: principles and practices. Springer, pp 305–327. ISBN: 978-3-319-42154-4

    Google Scholar 

  • Sillero JC, Rubiales D (2002) Histological characterization of the resistance of faba bean to faba bean rust. Phytopathology 92:294–299

    CAS  PubMed  Google Scholar 

  • Sillero JC, Cubero JI, Fernández-Aparicio M, Rubiales D (2005) Search for resistance to crenate broomrape (Orobanche crenata) in Lathyrus. Lathyrus Lathyrism Newsl 4:7–9

    Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, VazPatto MC, Warkentin T, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Google Scholar 

  • Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer Press, New Delhi

    Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004a) Genetics of resistance to Mycosphaerella pinodes in Lathyrus sativus. Aus J Agric Res 55:953–960

    CAS  Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004b) Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109:1726–1735

    CAS  PubMed  Google Scholar 

  • Skiba B, Ford R, Pang E (2005) Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defense-related expressed sequence tags (ESTs). Physiol Mol Plant Pathol 66:55–67

    CAS  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Zheng D, Rao SS et al (2010) Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi. Planta 232:1181–1189

    CAS  PubMed  Google Scholar 

  • Soriano JM, Royo C (2015) Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology 105:1585–1593

    Google Scholar 

  • Tavoletti S, Iommarini L (2007) Molecular marker analysis of genetic variation characterizing a grass pea (Lathyrus sativus) collection from central Italy. Plant Breed 126:607–611

    CAS  Google Scholar 

  • Tavoletti S, Iommarini L, Crinó P, Granati E (2005) Collection and evaluation of grasspea (Lathyrus sativus L.) germplasm of central Italy. Plant Breed 124:388–391

    Google Scholar 

  • Tay J, Valenzuela A, Venegas F (2000) Collecting and evaluating Chilean germplasm of grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newsl 1:21

    Google Scholar 

  • Tiwari KR, Campbell CG (1996) Inheritance of neurotoxin (ODAP) content, flower and seed coat colour in grass pea (Lathyrus sativus L.). FABIS Newsl 38(39):195–203

    Google Scholar 

  • Urga K, Fufa H, Biratu E, Husain A (2005) Evaluation of Lathyrus sativus cultivated in Ethiopia for proximate composition, minerals, ODAP and antinutritional components. Afr J Food Agric Nutr Dev 5(1):1–15

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Yang T, Burlyaeva M, Li L, Jiang J, Fang L, Redden R, Zong X (2015) Genetic diversity ofgrasspea and its relative species revealed by SSR markers. PLoS One10(3):e0118542

    Google Scholar 

  • Weimer JL (1947) Resistance of Lathyrus spp. and Pisum spp. to Ascochyta pinodella and Mycosphaerella pinodes. J Agric Res 75:181–190

    Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    CAS  PubMed  Google Scholar 

  • Wojciechowski M, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid mat K gene resolves many well-supported sub-clades within the family. Am J Bot 91:1846–1862

    CAS  PubMed  Google Scholar 

  • Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S et al (2015) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One 10

    Google Scholar 

  • Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121

    CAS  PubMed  Google Scholar 

  • Yunus AG, Jackson MT (1991) The gene pools of the grasspea (Lathyrus sativus L.). Plant Breed 106:319–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Paramanik, K., Banerjee, J., Das, A., Bhan, K. (2022). Genomic Designing for Biotic Stress Resistance in Grasspea. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91043-3_9

Download citation

Publish with us

Policies and ethics