Skip to main content

Abstract

Chickpea (Cicer arietinum L.) is the second most important grain legume crop of world and Indian subcontinent, contributing over 65% to the worlds chickpea production for securing nutritional and food security. The biotic and abiotic stresses in chickpea have been aggravated by the collective effect of climate change. These biotic stresses can be tactically controlled by developing effective, novel, conventional and molecular breeding technologies. Keeping this in view, we have discussed the major emerging diseases and pests, their diagnostics, epidemiological factors, breeding approaches for improved productivity, resistant/tolerant genetic resources from gene pools, disease resistant marker traits, major QTLs or genes and marker assisted breeding (MAB) technologies against major diseases and pests. Gene pyramiding for multiple disease resistances, introgressing genes from wild species with extraordinary yield potential, resistance to soil-borne (fusarium wilt, dry root rot, collar rot) and foliar (Ascochyta blight, Botrytis gray mold, rust, Alternaria blight) diseases are elaborated. The information on markers and QTLs for resistance to diseases, pests and nematodes would be useful for enhancing breeding activities in chickpea. Genetic engineering and marker assisted selection (MAS), advantages and their limitations are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Redden RJ, Yadav SS (2007) Ch 16: utilisation of wild relatives. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 338–354

    Google Scholar 

  • Ali MEK, Inanga S, Sugimoto Y (2002) Sources of resistance to Fusarium wilt of chickpea in Sudan. Phytopathol Mediterr 41:163–169

    Google Scholar 

  • Al-Taae AK, Hadwan HA, Al-Jobory SAE (2013) Physiological races of Fusarium oxysporum f. sp. ciceris in Iraq. J Life Sci 7:1070e1075

    Google Scholar 

  • Amule R, Gupta O, Mishra M (2014) Techniques for screening of chickpea genotypes against collar rot, its management through host plant resistance and fungicides. Legume Res 37:110–114. https://doi.org/10.5958/j.0976-0571.37.1.017

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    PubMed  Google Scholar 

  • Anwar F, Sharmila P, Pardha Saradhi P (2010) No more recalcitrant: chickpea regeneration and genetic transformation. Afr J Biotechnol 9(6):782–797

    Google Scholar 

  • Arvayo-Ortiz RM, Esqueda M, Acedo-Felix E, Sanchez A, Gutierrez A (2011) Morphological variability and races of Fusarium oxysporum f. sp. ciceris associated with chickpea (Cicer arietinum) crops. Am J Agric Biol Sci 6:114e121

    Google Scholar 

  • Asthana RD (1957) Some observations on the incidence of Uromyces ciceris-arietini (Grognot) Jacz. and Boyer on Cicer arietinum. Nagpur Agric College Mag 31:20A-20B

    Google Scholar 

  • Badami PS, Mallikarjuna N, Moss JP (1997) Interspecific hybridization between Cicer arietinum and C. Pinnatifidum. Plant Breed 116:393–395. https://doi.org/10.1111/j.1439-0523.1997.tb01019.x

    Article  Google Scholar 

  • Bahadur P, Sinha S (1967) Possibility of new collateral hosts for the rust of gram. Sci Cult 33:538–539

    Google Scholar 

  • BANR (Board on Agriculture and Natural Resources) (2000) Genetically modified pest protected plant: science and regulation. National Academy Press, Washington

    Google Scholar 

  • Barve MP, Haware MP, Sainini MN, Ranjekar PK, Gupta VS (2001) Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceris prevalent in India. Theor Appl Genet 102:138–147

    CAS  Google Scholar 

  • Bayraktar H, Dolar FS (2012) Pathogenic variability of Fusarium oxysporum f. sp. ciceris isolates from chickpea in Turkey. Pak J Bot 44: 821e823

    Google Scholar 

  • Biswas MK, Ali SKJ (2017) Management of Fusarium Wilt of Chickpea (Cicer arietinum L.) under the undulating red and lateritic Belt of West Bengal. Mycopathol Res 54(4): 461–468

    Google Scholar 

  • Brayford D (1998) Fusarium oxysporum f.sp. ciceris. IMI descriptioms of Fungi and Bacteria No. 1113. causing dry root-rot in chickpea. J Food Legumes 25:139–141

    Google Scholar 

  • Butler EJ, Bisby GR (1931) The fungi of India. Sci Monograph No 1. ICAR, New Delhi, pp XVIII 237

    Google Scholar 

  • Caballo C, Madrid E, Gil J, Chen W, Rubio J, Millan T (2019) Saturation of genomic region implicated in resistance to Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Mol Breed 39:16

    Google Scholar 

  • Castillo P, Mora-Rodríguez MP, NavasCortés JA, Jiménez-Díaz RM (1998) Interactions between Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on chickpea. Phytopathology 88:836–844

    Google Scholar 

  • Castillo P, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2008) Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis 92:840–853. https://doi.org/10.1094/PDIS-92-6-0840

  • Castro P, Rubio J, Madrid E, Fernández-Romero MD, Millán T, Gil J (2015) Efficiency of marker-assisted selection for ascochyta blight in chickpea. J AgricSci 153: 56–67

    Google Scholar 

  • Chen W, Sharma HC, Muehlbauer FJ (2011) Compendium of chickpea and lentil diseases and pests. American Phytopathological Society, Minnesota, USA, p 164

    Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicerarietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    PubMed  Google Scholar 

  • Chongo G, Buchwaldt L, Gossen BD, Lafond GP, May WE, Johnson EN, Hogg T (2003) Foliar fungicide to manage Ascochyta blight (Ascochyta rabiei) of chickpea in Canada. Can J Plant Pathol 25:135–142

    CAS  Google Scholar 

  • Choudhary P, Khanna SM, Jain PK, Bharadwaj C, Kumar J, LakheraPC SR (2012) Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res 11(2):891–905

    CAS  PubMed  Google Scholar 

  • Cobos MJ, Rubio J, Strange RN, Moreno MT, Gil J, Millan T (2006) A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 149:105–111

    Google Scholar 

  • Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylor PWJ (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Aust Pl Path 30:271–276

    Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Gen 107:719–729

    CAS  Google Scholar 

  • Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigations of QTL associated with seedlings resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chick pea. Theor Appl Genet 107:719–729

    CAS  PubMed  Google Scholar 

  • Cunnington J, Lindbeck K, Jones RH (2007) National diagnostic protocol for the detection of fusarium wilt of Chickpea (Fusarium oxysporum f. sp. ciceris). Plant Health Australia, Camberra, Australia

    Google Scholar 

  • DAC & FW (2019) First advance estimates of production of food-grains for 2018–19. Directorate of Economics and Statistics, Ministry of Agriculture, Cooperation and Farmers Welfare, Govt. of India pp-02. Accessed online from http://agricoop.gov.in. Accessed on 22 Feb 2020

  • Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Chaturvedi SK, Kumar PA, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner). Front Plant Sci 8:1423. https://doi.org/10.3389/fpls.2017.01423

  • Davidson JA, Pande S, Bretag TW, Lindbeck KD, Kishore GK (2004) Biology and management of Botrytis spp. in legume crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, The Netherlands, pp 295–318

    Google Scholar 

  • Demers JE, Garz-on CD, Jim-enez-Gasco MM (2014) Striking genetic similarity between races of Fusarium oxysporum f. sp. ciceris confirms a monophyletic origin and clonal evolution of the chickpea vascular wilt pathogen. Eur J Plant Pathol 139: 303e318

    Google Scholar 

  • Deshmukh GP, Pawar KB, Harer PN (2010) Occurrence of rust on chickpea in Western Maharashtra. J Maharashtra Agric Univs 35(3):485–486

    Google Scholar 

  • Di Vito M, Greco N, Singh KB, Saxena MC (1988) Response of chickpea germplasm lines to Heterodera ciceri attack. Nematol Mediterr 16:17–18

    Google Scholar 

  • Dolar FS (1997) Determination of the races of Fusarium oxysporum f. sp. ciceris in Ankara province. Turk J Turk Phytopathol 26:11e15

    Google Scholar 

  • Dua RP, Chaturvedi SK, Shiv S (2001) Reference varieties of chickpea for IPR regime. Indian Institute of Pulses Research, Kanpur duration genotypes in chickpea (Cicer arietinum L.). Legume Res 21(2):121–124

    Google Scholar 

  • Dubey SC, Singh B (2003) Evaluation of chickpea genotypes against Ascochyta blight. Indian Phytopathol 56:505

    Google Scholar 

  • Dubey SC, Aradhika T, Bhavani R, Singh B (2011) Evaluation of seed dressing and soil application formulation of Trichoderma species for integrated management of dry root rot of chickpea. Biol Sci Technol 21:93–100

    Google Scholar 

  • Dubey SC, Kumari P, Vivek S, Birendra S (2012) Race profiling and molecular diversity analysis of Fusarium oxysporum f.sp. ciceris causing wilt in chickpea. J Phytopathol 2–12

    Google Scholar 

  • Erler F, Ceylan F, Erdemir T, Toker C (2009) Preliminary results on evaluation of chickpea, Cicer arietinum, genotypes for resistance to the pulse beetle, Callosobruchus maculates. J Insect Sci 9:58–61

    Google Scholar 

  • Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel M (1997) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137–141

    CAS  PubMed  Google Scholar 

  • FAO (2019). In: Rawal V, Navarro DK (eds) The global economy of pulses. Food and Agriculture Organization of the United Nations, Rome, p 190

    Google Scholar 

  • Faretra F, Grindle M (1992) Genetic studies of Botryotinia fuckeliana (Botrytis cinerea). In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in botrytis research. Proceedings of the 10th international botrytis symposium. Pudoc ScientificPublishers, Wageningen, The Netherlands, Heraklion, Crete, Greece, pp 7–16

    Google Scholar 

  • Flandez-Galvez H, Ades R, Ford R, Pang E, Taylor, P (2003) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107: 1257–1265

    Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Google Scholar 

  • Gaur PM, Pande S, Upadhyaya HD, Rao BV (2006) Extra-large Kabuli chickpea with high resistance to Fusarium wilt. SAT eJ 2(1):1–2. http://www.ejournal.icrisat.org

  • Gaur PM, Gowda CLL, Knights EJ, Warkentin T, Acikoz N, Yadav SS, Kumar J (2007) Breeding achivements. In: Chickpea breeding. Centre for agriculture and bioscience international (CABI), Wallingford, UK

    Google Scholar 

  • Ghosh R, Sharma M, Telangre R, Pande S (2013) Occurrence and distribution of chickpea diseases in central and southern parts of India. Am J Plant Sci 4:940–944

    Google Scholar 

  • Greco N, Di Vito M, Saxena MC, Reddy MV (1988) Effect of Heterodera ciceri on yield of chickpea and lentil and development of this nematode on chickpea in Syria. Nematologica 34:98–114. https://doi.org/10.1163/002825988X00099

    Article  Google Scholar 

  • Grewal JS, Laha SK (1983) Chemical control of botrytis blight of chickpea. Indian JPhytopathol 36:516–520

    Google Scholar 

  • Grewal JS, Pal M, Rewal N (1992) Botrytis gray mold of chickpea in India. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT, Patancheru, AP, India, pp 6–8

    Google Scholar 

  • Gupta O, Rathi M, Mishra M (2012) Screening for resistance against Rhizoctonia bataticola causing dry root-rot in chickpea. J Food Legumes 25:139–141

    Google Scholar 

  • Gurjar G, Barve M, Giri A, Gupta V (2009) Identification of Indian pathogenic races of Fusarium oxysporum f. sp. ciceris with gene specific, ITS and random makers. Mycologia 101:484–495

    CAS  PubMed  Google Scholar 

  • Hadfield J, Thomas JE, Schwinghamer MW, Kraberger S, Stainton D, Dayaram A, Parry JN, Pande D, Martin DP, Varsani A (2012) Molecular characterisation of dicot-infecting mastreviruses from Australia. Virus Res 166:13–22

    CAS  PubMed  Google Scholar 

  • Hamwieh A, Imtiaz M, Hobson K, Kemal S (2013) Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm. Phytopathol Mediterr 52:183–191

    Google Scholar 

  • Harlan JR, de Wet Jan MJ (1971) Toward a rational classification of cultivated plants. Taxon, pp 509–517

    Google Scholar 

  • Haware MP, Nene YL (1980) Influence of wilt and different growth stages on yield loss in chickpea. Trop Grain Legume Bull 19:38–40

    Google Scholar 

  • Haware MP, Nene YL, Pundir RPS, Rao JN (1992) Screening of world chickpea germplasm for resistance to fusarium wilt. Field Crop Res 30:147–154

    Google Scholar 

  • Haware MP, Tripathi HS, Rathi YPS, Lenne JM, Janthi S (1997) Integrated management of Botrytis gray mold of chickpea: cultural, chemical, biological and resistance options. In: Haware MP, Lenne JM, Gowda CLL (eds) Recent advances in research on botrytis gray mold of chickpea. ICRISAT, Patancheru, AP, India, pp 9–12

    Google Scholar 

  • Haware MP, McDonald D (1992) Integrated management of botrytis gray mold of chickpea. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT: Patancheru, AP, India, pp 3–6

    Google Scholar 

  • Haware MP, Kumar J, Reddy MV (1980) Disease resistance in kabuli-desi chickpea introgression. In: Proceedings of the international workshop on chickpea improvement. ICRISAT, 28 Feb–2 March 1979, Hyderabad. India, ICRISAT, Patancheru, India, pp 67–69

    Google Scholar 

  • Haware MP (1998) Diseases of chickpea. In: Allen DJ, Lenne JM (eds) The pathology of food and pasture legumes. ICARDA, CAB International, Wallingford, UK, pp 473–516

    Google Scholar 

  • Hayward MD, Mcadam NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994) Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77:269–275

    Google Scholar 

  • Hernández Fernández V, Martín Barbarroja J, Jiménez-Díaz RM, Castillo P (2005) Reproductive fitness of Meloidogyne artiellia populations on chickpea and durum wheat. Nematology 7: 243–247. https://doi.org/10.1163/1568541054879656

  • Horn NM, Reddy SV, Robert IM, Reddy DVR (1993) chickpea chlorotic dwarf virus, a new leaf hopper transmitted geminivirus of chickpea in India. Ann Appl Biol 122:467–479

    Google Scholar 

  • Horn NM, Makkouk KM, Kumari SG, van den Heuvel JFJM, Reddy DVR (1995) Survey of chickpea (Cicer arietinum L.) for chickpea stunt disease and associated viruses in Syria, Turkey and Lebanon. Phytopathol Mediterr 34:192–198

    Google Scholar 

  • Horn NM, Reddy SV, van den Huevel JFJM, Reddy DVR (1996) Survey of chickpea (Cicerarietinum L.) for chickpea stunt disease and associated viruses in India and Pakistan. Plant Dis 80: 286–290. http://agropedia.iitk.ac.in

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogue sequences were submitted to EMBL database with accession nos. AJ307986–AJ307993 for C. arietinum and AJ307994—AJ307998 for C. reticulatum sequences. Theor Appl Genet 105:479–490

    CAS  PubMed  Google Scholar 

  • Hulse JH (1994) Nature, composition, and utilization of food legumes. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, The Netherlands, pp 77–97

    Google Scholar 

  • Hutokshi BB, Jayashree E, Kankanti C, Jonathan (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5: 16. https://doi.org/10.1186/1471-2229-5-16

  • ICRISAT Archival Report (2009). http://intranet/ddg/Admin%20Pages2009/Archival_Report_2009.aspx

    Google Scholar 

  • ICRISAT Archival Report (2010). http://intranet/ddg/Admin%20Pages2009/Archival_Report_2010.aspx

    Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31(3):339–345

    CAS  PubMed  Google Scholar 

  • Irula M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two QTL for resistance to Ascochyta Blight in an intraspecific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated to resistance. Theor Appl Genet 112:278–287

    Google Scholar 

  • Iulek J, Franco OL, Silva M, Slivinski CT, Bloch C, Rigden DJ, de Sa MFG (2000) Purification, biochemical characterisation and partial primary structure of a new α-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32(11):1195–1204

    CAS  PubMed  Google Scholar 

  • Jendoubi W, Bouhadida M, Boukteb A, Béji M, Kharrat M (2017) Fusarium wilt affecting chickpea crop. Agriculture 7:23

    Google Scholar 

  • Jha UC, Jha R, Bohra A, Manjunatha L, Saabale PR, Parida SK, Chaturvedi SK, Thakro V, Singh NP (2021) Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea. Plant Genetic Resour Char Utilization 1–8. https://doi.org/10.1017/S1479262121000228

  • Jimenez-diaz RM, Jiménez-gasco MM (2011) Integrated management of fusarium wilt diseases. In: Control of fusarium diseases. Transworld Research Network, Kerala, India, pp 177–215

    Google Scholar 

  • Jimenez-Diaz RM, Castillo P, del Mar Jiménez-Gasco M, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Protec 73

    Google Scholar 

  • Jimenez-Fernandez D, Montes-Borrego M, Jimenez Dıaz RM, Navas-Cortes JA, Landa BB (2011) In planta and soil quantification of Fusarium oxysporum f.sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Phytopathology 101:250–262

    Google Scholar 

  • Jimenez-Gasco MM, Jim_enez-Díaz RM (2003) Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. Phytopathology 93: 200e209

    Google Scholar 

  • Jimenez-Gasco MM, Milgroom MG, Jim_enez-Díaz RM (2002) Gene genealogies support Fusarium oxysporum f. sp. ciceris as a monophyletic group. Plant Pathol 51: 72e77

    Google Scholar 

  • Jingade P, Ravikumar RL (2015) Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Gen 94:723–729

    CAS  Google Scholar 

  • Joshi S (1992) Botrytis gray mold of chickpea in Nepal. In: Haware MP, Faris DG, Gowda CLL (eds) Botrytis gray mold of chickpea. ICRISAT: Patancheru, AP, India, pp 12–13

    Google Scholar 

  • Kaiser WJ, Danesh D (1971) Biology of four viruses affecting Cicer arietinum in Iran. Phytopathology 61:372–375

    Google Scholar 

  • Kaiser WJ, Hannan RM (1988) Seed transmission of Ascochyta rabiei in chickpea and its control by seed-treatment fungicides. Seed Sci Technol 16:625–638

    CAS  Google Scholar 

  • Kaiser WJ, Kusmenoglu I (1997) Distribution of mating types and the teleomorph of Ascochyta rabiei on chickpea in Turkey. Plant Dis 81:1284–1287

    CAS  PubMed  Google Scholar 

  • Kaiser WJ, Alcala-Jimenez AR, Hervas-Vargas A, Trapero-Casas JL, Jiménez-Díaz RM (1994) Screening of wild Cicer species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Disease 78: 962–967

    Google Scholar 

  • Kaiser WJ, Ghanekar AM, Nene YL, Rao BS, Anjaiah V (1990) Viral diseases of chickpea. In: Chickpea in the nineties: proceedings of the second international workshop on chickpea improvement. ICRISAT, Hyderabad, India, pp 139–142

    Google Scholar 

  • Kanakala S, Sakhare A, Verma HN, Malathi VG (2012) Infectivity and the phylogenetic relationship of a mastrevirus causing chickpea stunt disease in India. Eur J Plant Pathol 135:429–438

    Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cry1Ac gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of borer (Heliothis armigera) larvae. Transgenic Res 15:473–497

    Google Scholar 

  • Kaur L, Sandhu JS, Malhotra RS, Imtiaz M, Sirari A (2012) Sources of stable resistance to Ascochyta blight in exotic kabuli chickpea. J Food Legumes 25:79–80

    Google Scholar 

  • Khan MR, Ashraf S, Shahid S, Anwer MA (2010) Response of some chickpea cultivars to foliar, seed and soil inoculations with Botrytis cinerea. Phytopathol Mediterr 49:275–286

    Google Scholar 

  • Khedekar SA (2012) Studies on soybean rust (Phakopsora pachyrhizi syd.) and chickpea rust [Uromyces ciceris-arietini (Grognot) Jacz. and Boy.]. PhD thesis, Department of Plant Pathology, University of Agricultural Sciences, Dharwad, India, 171 p

    Google Scholar 

  • Kotasthane SR, Gupta OM (1978) Yield loss due to chickpea stunt. Trop Grain LegumeBull 12:38–39

    Google Scholar 

  • Kumari SG, Makkouk KM, Attar N (2006) An improved antiserum for sensitive serologic detection of Chickpea chlorotic dwarf virus. J Phytopathol 154:29–133

    Google Scholar 

  • Labdi M, Malhotra RS, Benzohra IE, Imtiaz M (2013) Inheritance of resistance to Ascochyta rabiei in 15 chickpea germplasm accessions. Plant Breed 132:197–199

    CAS  Google Scholar 

  • Laha SK, Khatua DC (1988) Sources of resistance against gray mold and stemphylium blight of gram. Environ Ecol 6(3):656–659

    Google Scholar 

  • Landa BB, Navas-Cortes JA, del mar Jiminez-Gasco M, Katan J, Retig B, Jimenez-Diaz RM (2006) Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of fusarium wilt. Plant Dis 90:365–374

    Google Scholar 

  • Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell Publishing, Ames, Iowa, USA

    Google Scholar 

  • Lukashevich AI (1958) Control measures against ascochytosis of chickpea. J Agric Sci 5:131–135

    Google Scholar 

  • Luthra JC, Bedi KS (1932) Some preliminary studies on gram blight with reference to the cause and mode of perennation. Indian J Agric Sci 2:499–515

    Google Scholar 

  • Maheshwari TU, Sharma SB, Reddy DDR, Haware MP (1995) Co-infection of wilt-resistant chickpeas by Fusarium oxysporum f. sp. ciceri and Meloidogyne javanica. Suppl J Nematol 27(4S):649–653

    Google Scholar 

  • Makkouk KM, Rizkallah L, Kumari SG, Zaki M, Abul Enein R (2003) First record of Chickpea chlorotic dwarf virus (CpCDV) affecting faba bean (Vicia faba) crops in Egypt. Plant Pathol 52–55

    Google Scholar 

  • Malhotra RS, Singh KB, Di Vito M, Greco N, Saxena MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42:1756. https://doi.org/10.2135/cropsci2002.1756

    Article  Google Scholar 

  • Manjunatha L, Saabale PR, Srivastava AK, Dixit GP, Yadav LB, Krishna K (2018) Present status on variability and management of Ascochyta rabiei infecting chickpea. Indian Phytopathol 71:9–24. https://doi.org/10.1007/s42360-018-0002-6

    Article  Google Scholar 

  • Manjunatha L, Srinivasa N, Basavaraja T, Keerthi MC (2021) Characterization of chickpea chlorotic dwarf virus (CpCDV) associated with chickpea stunt disease. Legume Res. https://doi.org/10.18805/LR-4512

    Article  Google Scholar 

  • Manjunatha L, Mamta Sharma, Saabale PR, Ravikumara BM, Singh NP (2018b) Comparative study on biochemical parameters among ascochyta blight infected moderately resistant and susceptible chickpea genotypes. Int J Curr Microbiol App Sci 7(10): 2152–2160. https://doi.org/10.20546/ijcmas.2018.710.247

  • Manjunatha L, Chaturvedi SK, Mondal B, Srivastava AK, Kumar Y, Krishna K, Shiv S, Dixit GP, Singh NP (2019) Evaluation of wild germplasm accessions against Botrytis gray mould in Chickpea. J Food Legumes 32(1): 33–35

    Google Scholar 

  • Mayer MS, Tullu A, Simon CJ, Kumar J, Kaiser WJ, Kraft JM, Muehlbauer FJ (1997) Development of a DNA marker for fusarium wilt resistance in chickpea. Crop Sci 37:1625–1629

    CAS  Google Scholar 

  • Mehta PR, Mundkur BB (1946) Some observations on rust of gram (Cicer arietinum). Indian J Agric Sci 16(2):186–192

    Google Scholar 

  • Millan T, Rubio J, Irula M, Daly K, Cubero JI, Gil J (2003) Marker associated with Ascochyta blight resistance in chickpea and their potential in marker assisted selection. Field Crop Res 84:373–384

    Google Scholar 

  • Mina U, Dubey SC (2010) Effect of environmental variables on development of Fusarium wilt in chickpea (Cicer arietinum) cultivars. Indian J Agric Sci 80(3):233–300

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998) Registration of ‘Myles’ chickpea. Crop Sci 38:283

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998) Registration of ‘Dwelley’ chickpea. Crop Sci 38:282–283

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Kusmenoglu I (1998) Registration of ‘Sanford’ chickpea. Crop Sci 38:282

    Google Scholar 

  • Muehlbauer FJ, Sarker A (2017) Economic importance of chickpea: production, value, and world trade. In Varshney R, Thudi M, Muehlbauer F (eds) The chickpea genome (pp. 5–12). Kole C (ed) Compendium of Plant Genomes. Springer International Publishing AG, Cham, switzerland, pp 5–12. https://doi.org/10.1007/978-3-319-66117-9_2

  • Muhire B, Martin DP, Brown JK, Navas-Castillo J, Moriones E, Zerbini M, Rivera-Bustamante RF, Malathi VG, Briddon RW, Varsani A (2013) A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 158: 1411–1424

    Google Scholar 

  • Nahid N, Amin I, Mansoor S, Rybicki EP, van der Walt E, Briddon RW (2008) Two dicot-infecting Mastreviruses, family Geminiviridae occur in Pakistan. Adv Virol 153:1441–1451

    CAS  Google Scholar 

  • Navas-Cortés JA, Hau B, Jiménez-Díaz RM (2000) Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 90:1269–1278

    Google Scholar 

  • Nawaz KS (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology 5:111–118

    Google Scholar 

  • Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64:379–380

    Google Scholar 

  • Nene YL, Reddy MV (1976) Preliminary information on Chickpea stunt. Trop Grain Legume Bull 5:31–32

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS (1991) Field diagnosis of chickpea diseases and their control. ICRISAT Inform Bull 28:52

    Google Scholar 

  • Nene YL, Shelia VK, Sharma SB (1996) A world list of chickpea and Pigeon pea pathogens, 5th edn. ICRISAT, Patancheru, pp 1–28

    Google Scholar 

  • Nene YL, Haware MP, Reddy MV (1981) Chickpea diseases: resistance screening techniques. Technical Report. ICRISAT, Pattancheru, AP, India

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS, Pande S, Sharma M (2012) Field diagnosis of chickpea diseases and their control. Information Bulletin No. 28 (revised). ICRISAT. Patancheru, AP, India, 60p. ISBN 92–9066–199–2

    Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity and disease management. Aust J Agric Res 56:317–332

    Google Scholar 

  • Pande S, Kishore GK, Upadhyaya HD, Rao JN (2006) Identification of multiple diseases resistance in mini-core collection of chickpea. Plant Dis 90:1214–1218

    CAS  PubMed  Google Scholar 

  • Pande S, Sharma M, Gaur PM, Basandrai AK, Kaur L, Hooda KS, Basandrai D, Kiran Babu T, Jain SK, Rathore A (2013) Biplotanalysis of genotype environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Aust Plant Pathol 42:561–571

    CAS  Google Scholar 

  • Pande S, Singh G, Rao JN, Bakr MA, Chaurasia PCP, Joshi S, Johansen C, Singh SD, Kumar J, Rahman MM, Gowda CLL (2002). Integrated management of botrytis gray mold of chickpea. Information Bulletin No. 61, ICRISAT, Andhra Pradesh, India

    Google Scholar 

  • Pande S, Desai S, Sharma M (2010) Impact of climate change on rainfed crop diseases: current status and future research needs. Lead Papers. National symposium on climate change and rainfed agriculture, 2010 Feb. 18–20. Hyderabad: Indian Society of Dryland Agriculture, Central Research Institute for Dryland Agriculture, pp 55–59

    Google Scholar 

  • Pandey G, Singh RB (1990) Survey of root diseases of chickpea in Allahabad region. Curr Nematol 1:77–78

    Google Scholar 

  • Patel MB, Srivastava KP (1989) Biology of groundnut aphid, Aphis craccivora Koch on cowpea, Vigna unguiculata (Linnaeus) Walpers. Bull Entomol 30(1):65–73

    Google Scholar 

  • Patil BS, Ravikumar RL, Bhat JS, Soregaon D (2014) Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed 50:171–176

    Google Scholar 

  • Patil BS, Basavarajappa MP, Chellapilla B, Jayant B (2016) Screening and Identification of resistance to rust in chickpea genotypes. Paper presented in: national conference on genetics and cytogenetics, UAS, Dharwad, 1–3 Feb, 2016, pp 116–117

    Google Scholar 

  • Payak MM (1962) Natural occurrence of gram rust in uredial stage on Trigonella polycerata L. in Simla Hills. Curr Sci 31:433–434

    Google Scholar 

  • Pearson CAS, Schwenk FW, Crowe FJ (1984) Colonization of soybean roots by Macrophomina phaseolina. Plant Dis 68:1086–1088

    Google Scholar 

  • Phillips JC (1988) A distinct race of chickpea wilt in California. Int Chickpea Newsl 18:19–20

    Google Scholar 

  • Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant 79:125–134

    CAS  Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Sharma KD, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII Bacterial Artificial Chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    CAS  PubMed  Google Scholar 

  • Rakshit S, Winter P, Tekeoglu M, Munoz JJ, Paff T, Benko-Iseppon AM (2003) DAF maker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 32: 23–30

    Google Scholar 

  • Ram RM, Singh HB (2018) Rhizoctonia bataticola: a serious threat to chickpea production. Int J Chem Stud 6(4): 715–723

    Google Scholar 

  • Ranga Rao GV, Shanower TG (1999) Identification and management of pigeonpea and chickpea insect pests in Asia. Information Bulletin no. 57. International Crops Research Institute for the Semi-Arid Tropics, Patancheru (India), p 99

    Google Scholar 

  • Ranga Rao GV, Rameshwar Rao V, Ghaffar MA (2013) Handbook on chickpea and pigeonpea insect pests identification and management. Information Bulletin No. 57, Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics, p 96

    Google Scholar 

  • Rao VK, Krishnappa K (1995) Reaction of some chickpea cultivars to Meloidogyne incognita in the field. Indian J Nematol 25:217–218

    Google Scholar 

  • Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Inter simple sequence—repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519

    CAS  Google Scholar 

  • Ratnaparkhe MB, Santra DK, Tullu A, Muehlbauer FJ (1998) Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96:348–353

    CAS  PubMed  Google Scholar 

  • Redden RJ, Berger JD (2007) History and origin of chickpea. In: Yadav SS et al (eds) Chickpea breeding and management. ©CAB International, pp 1–14

    Google Scholar 

  • Reed W, Cardona C, Sithanantham S, Lateef SS (1987) The chickpea insect pests and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, UK, pp 283–318

    Google Scholar 

  • Reed W, Lateef SS, Sithanantham S, Pawar CS (1989) Pigeon pea and chickpea insect identification hand-book. Information Bulletin no. 26. ISBN 92–9066–171–2. ICRISAT, Patancheru, India, p 123

    Google Scholar 

  • Rewal N, Grewal JS (1989) Inheritance of resistance to Botrytis cinerea Pers. Cicer Arietinum. Euphytica 44:61–63

    Google Scholar 

  • Van Rheenen HA, Reddy MV, Kumar J, Haware MP (1992) Breeding for resistance to soil-borne diseases in chickpea, pp 55–70. www.icrisat.org

  • Rubio J, Moreno MT, Moral A, Rubiales D, Gil J (2006) Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and ascochyta blight resistance. Crop Sci 46(5):2331–2332

    Google Scholar 

  • Saabale PR, Manjunatha L, Bhat S, Revanappa SB, Mishra RK, Naimuddin CRG, Srivastava AK, Chaturvedi SK, Singh NP (2019) Elucidation of host resistance for chickpea wilt (Fusariun oxysporum f. sp. ciceris). J Food Legumes 32:174–177

    Google Scholar 

  • Saabale PR, Manjunatha L, Mishra RK, Naimuddin, Gawande DN (2020) Diversity of chickpea germplasm against wilt disease caused by Fusarium oxysporum f. sp. ciceris, Race 2. J Food Legumes 33(4): 218–222

    Google Scholar 

  • Saksena HR, Prasada R (1955) Studies in gram rust, Uromyces ciceris-arietini (Grogn.). J Indian Phytopathol 8:94–98

    Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2019) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J. https://doi.org/10.1016/j.cj.2019.08.003

  • Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40:1606–1612

    CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Google Scholar 

  • Savary S, Nelson A, Sparks AH, Willocquet L, Duveiller E, Mahuku G, Forbes G, Garrett KA, Hodson D, Padgham J (2011) International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis 95:1204–1216

    PubMed  Google Scholar 

  • Saxena HP (1978) Pests of grain legumes and their control in India. In: Simgh SR, van Emden HF, Taylor TA (eds) The pests of grain legumes: ecology and control. Academic Press, New York, pp 15–23

    Google Scholar 

  • Saxena HP, Raina AK (1970) A bruchid resistant strain of Bengal gram. Curr Sci 39:189–190

    Google Scholar 

  • Sharma M, Pande S (2013) Unravelling effects of temperature and soil moisture stress response on development of dry root rot [Rhizoctonia bataticola (Taub.)] butler in chickpea. Am J Plant Sci 4:584–589

    Google Scholar 

  • Sharma HC, Gowda CCL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Rao GVR, Romies J, Miles M, Bouhssini ME (2006) Host plant resistance and insect pest management in chickpea. In: Yadav S, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, UK, pp 527–544

    Google Scholar 

  • Sharma M, Ghosh R, Sharma TR, Pande S (2012) Intra population diversity in Rhizocotonia bataticola causing dry root rot of chickpea (Cicer arietinum L.) in India. Afr J Microbiol Res 6:6653–6660

    CAS  Google Scholar 

  • Sharma M, Ghosh R, Ramesh RK, Upala NM, Chamarthi S, Varshney R, Pande S (2012) Molecular and morphological diversity in Rhizoctonia bataticola isolates causing dry root rot in chickpea (Cicer arietinum L.) in India. Afr J Biotechnol 11:8948–8959

    CAS  Google Scholar 

  • Sharma OP, Gopali JB, Yelshetty S, Bambawale OM, Garg DK, Bhosle BB (2010) Pests of pigeonpea and their management. NCIPM, New Delhi, India, p 112

    Google Scholar 

  • Sharma S, Upadhyaya HD, Roorkiwal M, Varshney RK, Gowda CLL (2013) Chickpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier, London; Waltham, MA, pp 81–104

    Google Scholar 

  • Sharma M, Ghosh R, Pande S (2016) Dry root rot (Rhizoctonia bataticola (Taub.) Butler): an emerging disease of chickpea—where do we stand? Arch Phytopathol Plant Protec 48 (13–16):797–812

    Google Scholar 

  • Sharma M, Raju G, Tarafdar A, Rathore A, Chobe Devashish R, Kumar Anil V, Gaur Pooran M, Samineni S, Gupta O, Singh NP, Saxena DR, Saifulla M, Pithia MS, Ghante PH, Mahalinga Deyanand M, Upadhyay JB, Harer PN (2019) Exploring the genetic cipher of chickpea (Cicer arietinum L.) through identification and multi-environment validation of resistant sources against fusarium wilt (Fusarium oxysporum f. sp. ciceris). Front Sustain Food Syst 3:78

    Google Scholar 

  • Sharma PD (2014) Plant pathology. Rajsons printers, New Delhi, p 315

    Google Scholar 

  • Shaw FJF, Ajrekar SL (1915) The genus Rhizoctonia in India. Mem Dept Agric India Bot Ser 7:117

    Google Scholar 

  • Shehabu M, Ahmed S, Sakhuja K (2008) Pathogenic variability in Ethiopian isolates of Fusarium oxysporum f. sp. ciceris and reaction of chickpea improved varieties to the isolates. Intl J Pest Manag 54:143e149

    Google Scholar 

  • Shrivastava SK, Singh SN, Khare MN (1984) Assessment of yield losses in some promising gram cultivars due to fusarial wilt. Indian J Plant Protec 12:125–126

    Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  • Singh G, Bhan LK (1986) Chemical control of gray mold in chickpea. Int Chickpea Newsl 15:18–20

    Google Scholar 

  • Singh G, Kaur L (1989) Genetic variability studies and scope for improvement in chickpea, Punjab, India. Int Chickpea Newsl 20:7

    Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Google Scholar 

  • Singh KB, Reddy MV (1983) Inheritance of resistance to ascochyta blight in chickpea. Crop Sci 23:9–10

    Google Scholar 

  • Singh KB, Reddy MV (1993) Susceptibility of the chickpea plant to Ascochyta blight at different stages of crop growth. Phytopathologia Mediterrenea 32:153–155

    Google Scholar 

  • Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Google Scholar 

  • Singh KB, Weigand S (1994) Identification of resistant sources in Cicer species to Liriomyzacicerina. Genet Resour Crop Evol 41:75–79

    Google Scholar 

  • Singh G, Kapoor S, Singh K, Gill AS (1984) Screening for resistance to gram wilt. Indian Phytopathol 37:393–394

    Google Scholar 

  • Singh K, Ocampo B, Robertson LD (1998) Diversity for abioticand biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:9–17

    Google Scholar 

  • Singh G, Sharma YR, Bains TS (1998) Status of Botrytis graymold of chickpea research in Punjab, India. In: Pande S, Bakr MA, Johansen C (eds) Recent advances in research and management of Botrytis gray mold of chickpea. ICRISAT, Patancheru, pp 7–14

    Google Scholar 

  • Singh G, Chen W, Rubiales D, Moore K, Sharma YR, Gan Y (2007) Chapter 24: diseases and their management. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, UK, pp 497–519

    Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–313

    CAS  PubMed  Google Scholar 

  • Singh S, Singh I, Kapoor K, Gaur PM, Chaturvedi SK, Singh NP, Sandhu JS (2014) Chickpea. Broadening Genetic Base Grain Legumes 51–73. https://doi.org/10.1007/978-81-322-2023-7_3

  • Singh G (1997) Epidemiology of botrytis gray mold of chickpea. In: Haware MP, Lenne JM, Gowda CLL (eds) Recent advances in research on botrytis gray mold of chickpea. ICRISAT: Patancheru, AP, India, pp 47–50

    Google Scholar 

  • Singh R (2009) Plant diseases. Oxford and IBH, New Delhi, pp 323–324

    Google Scholar 

  • Sivaramakrishnan S, Seetha K, Singh SD (2012) Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L.) assessed by molecular markers. Mycopathologia 155(3):171–178

    Google Scholar 

  • Spillane C, Gepts P (2001) Evolutionary and genetic perspectives on the dynamics of crop genepools. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 25–70

    Google Scholar 

  • Strobl S, Maskos K, Betz M, Wiegand G, Huber R, Gomis-RuEth FX, Glockshuber R (1998) Crystal structure of yellow meal worm α-amylase at 1.64 A resolution. J Mol Biol 278(3): 617–628

    Google Scholar 

  • Sunilkumar S (2015) Studies on chickpea rust [Uromyces ciceris-arietini (Grognot) Jacz. and Boy]. M.Sc. (Agri.) thesis, UAS, Dharwad, p 141

    Google Scholar 

  • Taleei Alireza K, Homayoun BM (2009) Genetical analysis of ascochyta blight resistance in chickpea. Commun Comput Inform Sci 57: 31–37. https://doi.org/10.1007/978-3-642-10616-3_5

  • Talekar SC, Lohithaswa HC, Viswanatha KP (2017) Identification of resistant sources and DNA markers linked to genomic region conferring dry root rot resistance in chickpea (Cicer arietinum L.). Plant Breeding 136(2):161–166

    Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    CAS  Google Scholar 

  • Taran B, Warkentin TD, Vandenberg (2013) A fast track genetic improvement of Ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor Appl Genet 126: 1639–1647

    Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    CAS  PubMed  Google Scholar 

  • Thompson JP, Reen RA, Clewett TG, Sheedy JG, Kelly AM, Gogel BJ, Knights EJ (2011) Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Aust Plant Pathol 40:601–611. https://doi.org/10.1007/s13313-011-0089-z

    Article  Google Scholar 

  • Thompson JP, Greco N, Eastwood R, Sharma SB, Scurrah M (2000) Integrated control of nematodes of cool season food legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century, 3rd edn. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 491–506. https://doi.org/10.1007/978-94-011-4385-1_45

  • Thripathi NN, Sharma BK (1983) Incidence of chickpea dry root rot (Rhizoctonia bataticola) in Southern Haryana. Intl Chickpea Newsl 8:22–23

    Google Scholar 

  • Toker C, Cagirgan MI (2004) Spectrum and frequency of induced mutations in chickpea. Int Chickpea Pigeonpea Newslett 11: 8–10

    Google Scholar 

  • Tulasne LR, Tulasne C (1862) “Fungi Hypogaei” Histoire et Monographie des champignons hypogés. Parisiis publisher, France, pp 188–195

    Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotypespecific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    CAS  PubMed  Google Scholar 

  • Vail S, Banniza S (2009) Molecular variability and mating-type frequencyof Ascochyta rabiei of chickpea from Saskatchewan. Aust Plant Pathol 38:392–398

    CAS  Google Scholar 

  • Van Der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MJ, Singh KB (eds) The chickpea. CAB International, Cambridge, pp 11–34

    Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 3:1120–1134

    Google Scholar 

  • Varshney R, Mohan S, Gaur P, Chamarthi S, Singh V, Srinivasan S, Swapna N, Sharma M, Pande S, Singh S, Kaur L (2014) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C 214, an elite cultivar of chickpea. The Plant Genome 7:278–289

    Google Scholar 

  • Vijay-Mohan PSM, Barnwal MK, Kudada N (2006) Influence of weather condition on dry root disease in chickpea. Indian Phytopathol 58(2):180–183

    Google Scholar 

  • Vir S, Grewal JS, Gupta VP (1975) Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 24:209–211

    Google Scholar 

  • Vishwadhar CRG (2001) Disease resistance in pulse crops-current status and future approaches. In: Nagarajan S, Singh DP (eds) The role of resistance in intensive agriculture. Kalyani Publishers, New Delhi, pp 144–157

    Google Scholar 

  • Wagh P, Khare N, Dantre RK (2018) Screening for resistance against rhizoctonia bataticola causing dry root-rot in chickpea (Cicer arietinum L.). Intl J Curr Microbiol Appl Sci 7(6): 2578–2581

    Google Scholar 

  • Westerlund FVJ, Campbell RN, Kimble KA (1974) Fungal root rots and wilt of chickpea in California. Phytopathology 64(4):432–436

    Google Scholar 

  • Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Sant PN, Rajesh G, Kahl, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor Appl Genet 101: 1155–1163

    Google Scholar 

  • Yadav SS, Kumar J, Turner NC, Berger J, Redden R, Mc Neil D (2004) Breading for improved productivity, multiple resistance and wide adaptation in chickpea (Cicer arietinum L.). Plant Genetic Resour Characteriz Utility 2:181–187. https://doi.org/10.1079/PGR200448

    Article  Google Scholar 

  • Yadava CP, Lal SS, Ahmad R, Sachan JN (1991) Influence of abiotic factor on relative abundance of pod borers of chickpea Cicer arietinum. Indian J Agric Sci 61:512

    Google Scholar 

  • Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua Lett. Appl Microbiol 42:109–114

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Head, Division of Crop Protection and the Director, ICAR-IIPR, Kanpur, India for his constant support to write this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjunatha, L. et al. (2022). Chickpea Biotic Stresses. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91043-3_2

Download citation

Publish with us

Policies and ethics