Skip to main content

Catalytic Conversion of Polysulfides in Li–S Batteries

  • Chapter
  • First Online:
Book cover Advances in Rechargeable Lithium–Sulfur Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 59))

  • 1005 Accesses

Abstract

The shuttling of polysulfides is a major issue that tackles the practical use of Li–S battery. Recently, the catalysis of polysulfides has been developed as an effective solution to accelerate the polysulfide conversion and reduce the shuttle effect fundamentally. In this chapter, the origin and the research progress of catalysis in Li–S batteries are presented systematically. We start with the redox chemistry of polysulfides and introduce the importance of catalysis in Li–S battery. Subsequently, promising catalytic materials are categorized according to their composition and functions. Moreover, key parameters that can precisely describe the catalytic mechanisms are proposed following by the summary of advanced characterization techniques for better demystifying the catalysis process, which is urgently needed for establishing a systematic research protocol for the catalysis in Li–S battery. Finally, perspectives are given for the rational design of high-efficiency catalytic materials and promoting the practice use of Li–S battery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem 52(50):13186–13200. https://doi.org/10.1002/anie.201304762

    Article  CAS  Google Scholar 

  2. Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134. https://doi.org/10.1021/ar300179v

    Article  CAS  Google Scholar 

  3. Wang D-W, Zeng Q, Zhou G, Yin L, Li F, Cheng H-M, Gentle IR, Lu GQM (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1(33):9382–9394. https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  4. Manthiram A, Chung SH, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27(12):1980–2006. https://doi.org/10.1002/adma.201405115

    Article  CAS  Google Scholar 

  5. Chen X, Hou T, Persson KA, Zhang Q (2018) Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater Today. https://doi.org/10.1016/j.mattod.2018.04.007

    Article  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29. https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  7. Chung S-H, Chang C-H, Manthiram A (2018) Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Func Mater 28(28):1801188. https://doi.org/10.1002/adfm.201801188

    Article  CAS  Google Scholar 

  8. Rauh R, Abraham K, Pearson G, Surprenant J, Brummer S (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523

    Article  CAS  Google Scholar 

  9. Li G, Lu F, Dou X, Wang X, Luo D, Sun H, Yu A, Chen Z (2020) Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J Am Chem Soc 142(7):3583–3592. https://doi.org/10.1021/jacs.9b13303

    Article  CAS  Google Scholar 

  10. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162. https://doi.org/10.1016/j.jpowsour.2012.12.102

    Article  CAS  Google Scholar 

  11. Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q (2016) Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16(1):519–527. https://doi.org/10.1021/acs.nanolett.5b04166

    Article  CAS  Google Scholar 

  12. Lei T, Chen W, Lv W, Huang J, Zhu J, Chu J, Yan C, Wu C, Yan Y, He W, Xiong J, Li Y, Yan C, Goodenough JB, Duan X (2018) Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2(10):2091–2104. https://doi.org/10.1016/j.joule.2018.07.022

    Article  CAS  Google Scholar 

  13. Peng H-J, Huang J-Q, Cheng X-B, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7(24):1700260. https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  14. Bhargav A, He J, Gupta A, Manthiram A (2020) Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2):285–291. https://doi.org/10.1016/j.joule.2020.01.001

    Article  Google Scholar 

  15. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506. https://doi.org/10.1038/nmat2460

    Article  CAS  Google Scholar 

  16. Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y (2017) Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA 114(5):840–845. https://doi.org/10.1073/pnas.1615837114

    Article  CAS  Google Scholar 

  17. Zheng G, Zhang Q, Cha JJ, Yang Y, Li W, Seh ZW, Cui Y (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3):1265–1270. https://doi.org/10.1021/nl304795g

    Article  CAS  Google Scholar 

  18. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1. https://doi.org/10.1038/nenergy.2016.132

  19. Wu DS, Shi F, Zhou G, Zu C, Liu C, Liu K, Liu Y, Wang J, Peng Y, Cui Y (2018) Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Mater 13:241–246. https://doi.org/10.1016/j.ensm.2018.01.020

    Article  Google Scholar 

  20. Ma L, Yuan H, Zhang W, Zhu G, Wang Y, Hu Y, Zhao P, Chen R, Chen T, Liu J, Hu Z, Jin Z (2017) Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries. Nano Lett 17(12):7839–7846. https://doi.org/10.1021/acs.nanolett.7b04084

    Article  CAS  Google Scholar 

  21. Zhang J, Hu H, Li Z, Lou XW (2016) Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew Chem 55(12):3982–3986. https://doi.org/10.1002/anie.201511632

    Article  CAS  Google Scholar 

  22. Su YS, Manthiram A (2012) Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166. https://doi.org/10.1038/ncomms2163

    Article  Google Scholar 

  23. Bai S, Liu X, Zhu K, Wu S, Zhou H (2016) Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy 1(7). https://doi.org/10.1038/nenergy.2016.94

  24. Luo C, Liang X, Sun Y, Lv W, Sun Y, Lu Z, Hua W, Yang H, Wang R, Yan C, Li J, Wan Y, Yang Q-H (2020) An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater 33:290–297. https://doi.org/10.1016/j.ensm.2020.08.033

    Article  Google Scholar 

  25. Peng L, Wei Z, Wan C, Li J, Chen Z, Zhu D, Baumann D, Liu H, Allen CS, Xu X, Kirkland AI, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X (2020) A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal 3(9):762–770. https://doi.org/10.1038/s41929-020-0498-x

    Article  CAS  Google Scholar 

  26. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759. https://doi.org/10.1038/ncomms5759

    Article  CAS  Google Scholar 

  27. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6:5682. https://doi.org/10.1038/ncomms6682

    Article  Google Scholar 

  28. Liang X, Kwok CY, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar LF (2016) Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv Energy Mater 6(6). https://doi.org/10.1002/aenm.201501636

  29. Wang H, Zhang N, Li Y, Zhang P, Chen Z, Zhang C, Qiao X, Dai Y, Wang Q, Liu S (2019) Unique flexible NiFe2O4@S/rGO-CNT electrode via the synergistic adsorption/electrocatalysis effect toward high-performance lithium-sulfur batteries. J Phys Chem Lett 10(21):6518–6524. https://doi.org/10.1021/acs.jpclett.9b02649

    Article  CAS  Google Scholar 

  30. Zhou Y, Shu H, Zhou Y, Sun T, Han M, Chen Y, Chen M, Chen Z, Yang X, Wang X (2020) Flower-like Bi4Ti3O12/carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. J Power Sources 453. https://doi.org/10.1016/j.jpowsour.2020.227896

  31. Liu YT, Han DD, Wang L, Li GR, Liu S, Gao XP (2019) NiCo2O4 nanofibers as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite with high volumetric capacity for lithium–sulfur battery. Adv Energy Mater 9(11). https://doi.org/10.1002/aenm.201803477

  32. Zhang L, Wan F, Cao H, Liu L, Wang Y, Niu Z (2020) Integration of binary active sites: Co3V2O8 as polysulfide traps and catalysts for lithium-sulfur battery with superior cycling stability. Small 16(18):e1907153. https://doi.org/10.1002/smll.201907153

  33. Guo P, Sun K, Shang X, Liu D, Wang Y, Liu Q, Fu Y, He D (2019) Nb2O5/RGO nanocomposite modified separators with robust polysulfide traps and catalytic centers for boosting performance of lithium-sulfur batteries. Small 15(40):1902363. https://doi.org/10.1002/smll.201902363

    Article  CAS  Google Scholar 

  34. Song YZ, Zhao W, Zhu XY, Zhang L, Li QC, Ding F, Liu ZF, Sun JY (2018) Vanadium dioxide-graphene composite with ultrafast anchoring behavior of polysulfides for lithium-sulfur batteries. Acs Appl Mater Inter 10(18):15733–15741. https://doi.org/10.1021/acsami.8b02920

    Article  CAS  Google Scholar 

  35. He J, Luo L, Chen Y, Manthiram A (2017) Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater 29(34):1702707–1702712. https://doi.org/10.1002/adma.201702707

    Article  CAS  Google Scholar 

  36. Liu R, Guo F, Zhang X, Yang J, Li M, Miaomiao W, Liu H, Feng M, Zhang L (2019) Novel “bird-nest” structured Co3O4/acidified multiwall carbon nanotube (ACNT) hosting materials for lithium-sulfur batteries. Acs Appl Energ Mater 2(2):1348–1356. https://doi.org/10.1021/acsaem.8b01914

    Article  CAS  Google Scholar 

  37. Ding M, Huang S, Wang Y, Hu J, Pam ME, Fan S, Shi Y, Ge Q, Yang HY (2019) Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium–sulfur batteries. J Mater Chem A 7(43):25078–25087. https://doi.org/10.1039/c9ta06489c

    Article  CAS  Google Scholar 

  38. Zheng C, Niu S, Lv W, Zhou G, Li J, Fan S, Deng Y, Pan Z, Li B, Kang F, Yang Q-H (2017) Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 33:306–312. https://doi.org/10.1016/j.nanoen.2017.01.040

    Article  CAS  Google Scholar 

  39. Wang H-E, Yin K, Qin N, Zhao X, Xia F-J, Hu Z-Y, Guo G, Cao G, Zhang W (2019) Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J Mater Chem A 7(17):10346–10353. https://doi.org/10.1039/c9ta01598a

    Article  CAS  Google Scholar 

  40. Li Z, Zhou C, Hua J, Hong X, Sun C, Li HW, Xu X, Mai L (2020) Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv Mater 32(10):e1907444. https://doi.org/10.1002/adma.201907444

  41. Pu J, Shen Z, Zheng J, Wu W, Zhu C, Zhou Q, Zhang H, Pan F (2017) Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37:7–14. https://doi.org/10.1016/j.nanoen.2017.05.009

    Article  CAS  Google Scholar 

  42. Wang H, Zhang Q, Yao H, Liang Z, Lee HW, Hsu PC, Zheng G, Cui Y (2014) High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett 14(12):7138–7144. https://doi.org/10.1021/nl503730c

    Article  CAS  Google Scholar 

  43. Yu X, Zhou G, Cui Y (2019) Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer. ACS Appl Mater Inter 11(3):3080–3086. https://doi.org/10.1021/acsami.8b19354

    Article  CAS  Google Scholar 

  44. Babu G, Masurkar N, Al Salem H, Arava LM (2017) Transition Metal Dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J Am Chem Soc 139(1):171–178. https://doi.org/10.1021/jacs.6b08681

    Article  CAS  Google Scholar 

  45. Lin HB, Yang LQ, Jiang X, Li GC, Zhang TR, Yao QF, Zheng GW, Lee JY (2017) Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energ Environ Sci 10(6):1476–1486. https://doi.org/10.1039/c7ee01047h

    Article  CAS  Google Scholar 

  46. Lin HB, Zhang SL, Zhang TR, Ye HL, Yao QF, Zheng GW, Lee JY (2019) Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv Energy Mater 9(38). https://doi.org/10.1002/aenm.201902096

  47. Li Z, He Q, Xu X, Zhao Y, Liu X, Zhou C, Ai D, Xia L, Mai L (2018) A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv Mater 30(45):1804089. https://doi.org/10.1002/adma.201804089

    Article  CAS  Google Scholar 

  48. Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931. https://doi.org/10.1002/adma.201601382

    Article  CAS  Google Scholar 

  49. Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 8:8. https://doi.org/10.1038/ncomms14627

    Article  Google Scholar 

  50. Characterization and electrochemical actives of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries

    Google Scholar 

  51. Chen G, Song X, Wang S, Chen X, Wang H (2018) Two-dimensional molybdenum nitride nanosheets modified Celgard separator with multifunction for Li-S batteries. J Power Sources 408:58–64. https://doi.org/10.1016/j.jpowsour.2018.10.078

    Article  CAS  Google Scholar 

  52. Deng D-R, An T-H, Li Y-J, Wu Q-H, Zheng M-S, Dong Q-F (2016) Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li–S batteries. J Mater Chem A 4(41):16184–16190. https://doi.org/10.1039/c6ta07221f

    Article  CAS  Google Scholar 

  53. Deng DR, Xue F, Jia YJ, Ye JC, Bai CD, Zheng MS, Dong QF (2017) Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 11(6):6031–6039. https://doi.org/10.1021/acsnano.7b01945

    Article  CAS  Google Scholar 

  54. Li Z, Wang X, Liu J, Gao C, Jiang L, Lin Y, Meng A (2020) 3D honeycomb nanostructure comprised of mesoporous N-doped carbon nanosheets encapsulating isolated cobalt and vanadium nitride nanoparticles as a highly efficient electrocatalyst for the oxygen reduction reaction. ACS Sustain Chem Eng 8(8):3291–3301. https://doi.org/10.1021/acssuschemeng.9b06934

    Article  CAS  Google Scholar 

  55. Wang Y, Zhang R, Pang Y-c, Chen X, Lang J, Xu J, Xiao C, Li H, Xi K, Ding S (2019) Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater 16:228–235. https://doi.org/10.1016/j.ensm.2018.05.019

    Article  Google Scholar 

  56. Zhao M, Peng HJ, Zhang ZW, Li BQ, Chen X, Xie J, Chen X, Wei JY, Zhang Q, Huang JQ (2019) Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew Chem Int Edit 58(12):3779–3783. https://doi.org/10.1002/anie.201812062

    Article  CAS  Google Scholar 

  57. Li X, Gao B, Huang X, Guo Z, Li Q, Zhang X, Chu PK, Huo K (2019) Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 11(3):2961–2969. https://doi.org/10.1021/acsami.8b17376

    Article  CAS  Google Scholar 

  58. Fan S, Huang SZ, Pam ME, Chen S, Wu QY, Hu JP, Wang Y, Ang LK, Yan CC, Shi YM, Yang HY (2019) Design multifunctional catalytic interface: toward regulation of polysulfide and Li2S redox conversion in Li-S batteries. Small 15(51). https://doi.org/10.1002/smll.201906132

  59. Tian D, Song XQ, Wang MX, Wu X, Qiu Y, Guan B, Xu XZ, Fan LS, Zhang NQ, Sun KN (2019) MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv Energy Mater 9(46). https://doi.org/10.1002/aenm.201901940

  60. Liu Z, Zhou L, Ge Q, Chen R, Ni M, Utetiwabo W, Zhang X, Yang W (2018) Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interfaces 10(23):19311–19317. https://doi.org/10.1021/acsami.8b03830

    Article  CAS  Google Scholar 

  61. Wang J, Jia L, Zhong J, Xiao Q, Wang C, Zang K, Liu H, Zheng H, Luo J, Yang J, Fan H, Duan W, Wu Y, Lin H, Zhang Y (2019) Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater 18:246–252. https://doi.org/10.1016/j.ensm.2018.09.006

    Article  Google Scholar 

  62. Du Z, Chen X, Hu W, Chuang C, Xie S, Hu A, Yan W, Kong X, Wu X, Ji H, Wan LJ (2019) Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 141(9):3977–3985. https://doi.org/10.1021/jacs.8b12973

    Article  CAS  Google Scholar 

  63. Xie J, Li BQ, Peng HJ, Song YW, Zhao M, Chen X, Zhang Q, Huang JQ (2019) Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater 31(43):e1903813. https://doi.org/10.1002/adma.201903813

  64. Zhang D, Wang S, Hu R, Gu J, Cui Y, Li B, Chen W, Liu C, Shang J, Yang S (2020) Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv Func Mater. https://doi.org/10.1002/adfm.202002471

    Article  Google Scholar 

  65. Zhang L, Liu D, Muhammad Z, Wan F, Xie W, Wang Y, Song L, Niu Z, Chen J (2019) Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv Mater 31(40):e1903955. https://doi.org/10.1002/adma.201903955

  66. Li S, Zhang W, Zheng J, Lv M, Song H, Du L (2020) Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid‐state electrolytes. Adv Energy Mater 202000779–220200803. https://doi.org/10.1002/aenm.202000779

  67. Zhang K, Chen Z, Ning R, Xi S, Tang W, Du Y, Liu C, Ren Z, Chi X, Bai M, Shen C, Li X, Wang X, Zhao X, Leng K, Pennycook SJ, Li H, Xu H, Loh KP, Xie K (2019) Single-atom coated separator for robust lithium-sulfur batteries. ACS Appl Mater Interfaces 11(28):25147–25154. https://doi.org/10.1021/acsami.9b05628

    Article  CAS  Google Scholar 

  68. Lu C, Chen Y, Yang Y, Chen X (2020) Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries. Nano Lett 20(7):5522–5530. https://doi.org/10.1021/acs.nanolett.0c02167

    Article  CAS  Google Scholar 

  69. Wang C, Song H, Yu C, Ullah Z, Guan Z, Chu R, Zhang Y, Zhao L, Li Q, Liu L (2020) Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J Mater Chem A 8(6):3421–3430. https://doi.org/10.1039/c9ta11680j

    Article  CAS  Google Scholar 

  70. Li Y, Wu J, Zhang B, Wang W, Zhang G, Seh ZW, Zhang N, Sun J, Huang L, Jiang J, Zhou J, Sun Y (2020) Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater 30:250–259. https://doi.org/10.1016/j.ensm.2020.05.022

    Article  Google Scholar 

  71. Wu J, Chen J, Huang Y, Feng K, Deng J, Huang W, Wu Y, Zhong J, Li Y (2019) Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci Bull 64(24):1875–1880. https://doi.org/10.1016/j.scib.2019.08.016

    Article  CAS  Google Scholar 

  72. Fang L, Feng Z, Cheng L, Winans RE, Li T (2020) Design principles of single atoms on carbons for lithium–sulfur batteries. Small Methods 2000315. https://doi.org/10.1002/smtd.202000315

  73. Zhou TH, Lv W, Li J, Zhou GM, Zhao Y, Fan SX, Liu BL, Li BH, Kang FY, Yang QH (2017) Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energ Environ Sci 10(7):1694–1703. https://doi.org/10.1039/c7ee01430a

    Article  CAS  Google Scholar 

  74. Wang M, Fan L, Wu X, Qiu Y, Wang Y, Zhang N, Sun K (2019) SnS2/SnO2 heterostructures towards enhanced electrochemical performance of lithium-sulfur batteries. Chemistry 25(21):5416–5421. https://doi.org/10.1002/chem.201806231

    Article  CAS  Google Scholar 

  75. Jin Z, Lin T, Jia H, Liu B, Zhang Q, Chen L, Zhang L, Li L, Su Z, Wang C (2020) In situ engineered ultrafine NiS2-ZnS heterostructures in micro-mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium-sulfur batteries. Nanoscale 12(30):16201–16207. https://doi.org/10.1039/d0nr04189k

    Article  CAS  Google Scholar 

  76. Hao B, Li H, Lv W, Zhang Y, Niu S, Qi Q, Xiao S, Li J, Kang F, Yang Q-H (2019) Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 60:305–311. https://doi.org/10.1016/j.nanoen.2019.03.064

    Article  CAS  Google Scholar 

  77. Zhang B, Luo C, Deng Y, Huang Z, Zhou G, Lv W, He YB, Wan Y, Kang F, Yang QH (2020) Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv Energy Mater 10(15):2000091. https://doi.org/10.1002/aenm.202000091

    Article  CAS  Google Scholar 

  78. Wang R, Luo C, Wang T, Zhou G, Deng Y, He Y, Zhang Q, Kang F, Lv W, Yang QH (2020) Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv Mater e2000315. https://doi.org/10.1002/adma.202000315

  79. Wang N, Chen B, Qin K, Liu E, Shi C, He C, Zhao N (2019) Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. Nano Energy 60:332–339. https://doi.org/10.1016/j.nanoen.2019.03.060

    Article  CAS  Google Scholar 

  80. Jiao L, Zhang C, Geng C, Wu S, Li H, Lv W, Tao Y, Chen Z, Zhou G, Li J, Ling G, Wan Y, Yang QH (2019) Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv Energy Mater 9(19):1900219–1900228. https://doi.org/10.1002/aenm.201900219

    Article  CAS  Google Scholar 

  81. Fang R, Zhao S, Sun Z, Wang D-W, Amal R, Wang S, Cheng H-M, Li F (2018) Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater 10:56–61. https://doi.org/10.1016/j.ensm.2017.08.005

    Article  Google Scholar 

  82. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A (2019) Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci 12(1):344–350. https://doi.org/10.1039/c8ee03252a

    Article  CAS  Google Scholar 

  83. Wang Z, Yu K, Feng Y, Qi R, Ren J, Zhu Z (2019) VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl Mater Interfaces 11(47):44282–44292. https://doi.org/10.1021/acsami.9b15586

    Article  CAS  Google Scholar 

  84. Zhou T, Zhao Y, Zhou G, Lv W, Sun P, Kang F, Li B, Yang QH (2017) An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 39:291–296. https://doi.org/10.1016/j.nanoen.2017.07.012

    Article  CAS  Google Scholar 

  85. Wu J, You N, Li X, Zeng H, Li S, Xue Z, Ye Y, Xie X (2019) SiO2@MoS2 core–shell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithium–sulfur batteries. J Mater Chem A 7(13):7644–7653. https://doi.org/10.1039/c9ta00982e

    Article  CAS  Google Scholar 

  86. Zhang L, Liu Y, Zhao Z, Jiang P, Zhang T, Li M, Pan S, Tang T, Wu T, Liu P, Hou Y, Lu H (2020) Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 14(7):8495–8507. https://doi.org/10.1021/acsnano.0c02762

    Article  CAS  Google Scholar 

  87. Ye C, Jiao Y, Jin H, Slattery AD, Davey K, Wang H, Qiao SZ (2018) 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew Chem Int Ed Engl 57(51):16703–16707. https://doi.org/10.1002/anie.201810579

    Article  CAS  Google Scholar 

  88. Song Y, Zhao W, Kong L, Zhang L, Zhu X, Shao Y, Ding F, Zhang Q, Sun J, Liu Z (2018) Synchronous immobilization and conversion of polysulfides on a VO2–VN binary host targeting high sulfur load Li–S batteries. Energy Environ Sci 11(9):2620–2630. https://doi.org/10.1039/c8ee01402g

    Article  CAS  Google Scholar 

  89. Zeng S, Arumugam GM, Liu X, Yang Y, Li X, Zhong H, Guo F, Mai Y (2020) Encapsulation of sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode. Small:e2001027. https://doi.org/10.1002/smll.202001027

  90. Babu G, Ababtain K, Ng KY, Arava LM (2015) Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci Rep 5:8763. https://doi.org/10.1038/srep08763

    Article  CAS  Google Scholar 

  91. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  92. Peng H, Zhang Y, Chen Y, Zhang J, Jiang H, Chen X, Zhang Z, Zeng Y, Sa B, Wei Q, Lin J, Guo H (2020) Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Mater Today Energy 18:100519. https://doi.org/10.1016/j.mtener.2020.100519

  93. Huang X, Wang Z, Knibbe R, Luo B, Ahad SA, Sun D, Wang L (2019) Cyclic voltammetry in lithium-sulfur batteries—challenges and opportunities. Energ Technol. https://doi.org/10.1002/ente.201801001

    Article  Google Scholar 

  94. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 8:14627. https://doi.org/10.1038/ncomms14627

    Article  Google Scholar 

  95. Zhang G, Zhang Z-W, Peng H-J, Huang J-Q, Zhang Q (2017) A toolbox for lithium-sulfur battery research: methods and protocols. Small Methods 1(7):1700134. https://doi.org/10.1002/smtd.201700134

    Article  CAS  Google Scholar 

  96. Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56(13):4869–4875. https://doi.org/10.1016/j.electacta.2011.02.119

    Article  CAS  Google Scholar 

  97. Chauhan M, Reddy KP, Gopinath CS, Deka S (2017) Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal 7(9):5871–5879. https://doi.org/10.1021/acscatal.7b01831

    Article  CAS  Google Scholar 

  98. Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ (2019) Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat 1(4):533–541. https://doi.org/10.1002/inf2.12056

    Article  CAS  Google Scholar 

  99. Al Salem H, Babu G, Rao CV, Arava LM (2015) Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc 137(36):11542–11545. https://doi.org/10.1021/jacs.5b04472

    Article  CAS  Google Scholar 

  100. Yu M, Zhou S, Wang Z, Wang Y, Zhang N, Wang S, Zhao J, Qiu J (2019) Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater 20:98–107. https://doi.org/10.1016/j.ensm.2018.11.028

    Article  Google Scholar 

  101. Pang Q, Kwok CY, Kundu D, Liang X, Nazar LF (2019) Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 3(1):136–148. https://doi.org/10.1016/j.joule.2018.09.024

    Article  CAS  Google Scholar 

  102. Tao Y, Wei Y, Liu Y, Wang J, Qiao W, Ling L, Long D (2016) Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery. Energy Environ Sci 9(10):3230–3239. https://doi.org/10.1039/c6ee01662f

    Article  CAS  Google Scholar 

  103. Shen Z, Zhang Z, Li M, Yuan Y, Zhao Y, Zhang S, Zhong C, Zhu J, Lu J, Zhang H (2020) Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14(6):6673–6682. https://doi.org/10.1021/acsnano.9b09371

  104. Shen Z, Cao M, Zhang Z, Pu J, Zhong C, Li J, Ma H, Li F, Zhu J, Pan F, Zhang H (2019) Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv Func Mater 30(3):1906661. https://doi.org/10.1002/adfm.201906661

    Article  CAS  Google Scholar 

  105. Zhou R, Zheng Y, Jaroniec M, Qiao S-Z (2016) Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal 6(7):4720–4728. https://doi.org/10.1021/acscatal.6b01581

    Article  CAS  Google Scholar 

  106. Du L, Wu Q, Yang L, Wang X, Che R, Lyu Z, Chen W, Wang X, Hu Z (2019) Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy 57:34–40. https://doi.org/10.1016/j.nanoen.2018.12.019

    Article  CAS  Google Scholar 

  107. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J (2019) Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv Energy Mater 10(11):1901075. https://doi.org/10.1002/aenm.201901075

    Article  CAS  Google Scholar 

  108. Fan FY, Carter WC, Chiang YM (2015) Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater 27(35):5203–5209. https://doi.org/10.1002/adma.201501559

    Article  CAS  Google Scholar 

  109. Fan S, Huang S, Pam ME, Chen S, Wu Q, Hu J, Wang Y, Ang LK, Yan C, Shi Y, Yang HY (2019) Design multifunctional catalytic interface: toward regulation of polysulfide and Li2S redox conversion in Li-S batteries. Small 15(51):e1906132. https://doi.org/10.1002/smll.201906132

  110. Zhou G, Zhao S, Wang T, Yang SZ, Johannessen B, Chen H, Liu C, Ye Y, Wu Y, Peng Y, Liu C, Jiang SP, Zhang Q, Cui Y (2020) Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett 20(2):1252–1261. https://doi.org/10.1021/acs.nanolett.9b04719

    Article  CAS  Google Scholar 

  111. Guangmin Zhou L-CY, Lu, Da-Wei Wang, Li SP, Gentle IR, Li F, Cheng H-M (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ASC Nano 7:5367–5375

    Google Scholar 

  112. Ma L, Zhuang H, Lu Y, Moganty SS, Hennig RG, Archer LA (2014) Tethered molecular sorbents: enabling metal-sulfur battery cathodes. Adv Energy Mater 4(17):1400390. https://doi.org/10.1002/aenm.201400390

    Article  CAS  Google Scholar 

  113. Xiao Z, Yang Z, Wang L, Nie H, Zhong M, Lai Q, Xu X, Zhang L, Huang S (2015) A lightweight TiO(2)/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, Long-Life Lithium-Sulfur Batteries. Adv Mater 27(18):2891–2898. https://doi.org/10.1002/adma.201405637

    Article  CAS  Google Scholar 

  114. Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed Engl 54(13):3907–3911. https://doi.org/10.1002/anie.201410174

    Article  CAS  Google Scholar 

  115. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1(9). https://doi.org/10.1038/nenergy.2016.132

  116. Zhou J, Liu X, Zhu L, Zhou J, Guan Y, Chen L, Niu S, Cai J, Sun D, Zhu Y, Du J, Wang G, Qian Y (2018) Deciphering the modulation essence of p bands in co-based compounds on Li-S chemistry. Joule 2(12):2681–2693. https://doi.org/10.1016/j.joule.2018.08.010

    Article  CAS  Google Scholar 

  117. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J (2019) Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv Energy Mater 10(11). https://doi.org/10.1002/aenm.201901075

  118. Yu J, Xiao J, Li A, Yang Z, Zeng L, Zhang Q, Zhu Y, Guo L (2020) Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew Chem Int Ed Engl 59(31):13071–13078. https://doi.org/10.1002/anie.202004914

    Article  CAS  Google Scholar 

  119. Ye H, Lee JY (2020) Solid additives for improving the performance of sulfur cathodes in lithium-sulfur batteries—adsorbents, mediators, and catalysts. Small Methods 4(6):1900864. https://doi.org/10.1002/smtd.201900864

    Article  CAS  Google Scholar 

  120. Tsao Y, Lee M, Miller EC, Gao G, Park J, Chen S, Katsumata T, Tran H, Wang L-W, Toney MF, Cui Y, Bao Z (2019) Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 3(3):872–884. https://doi.org/10.1016/j.joule.2018.12.018

    Article  CAS  Google Scholar 

  121. Liang X, Kwok CY, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar LF (2016) Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv Energy Mater 6(6):1501636. https://doi.org/10.1002/aenm.201501636

    Article  CAS  Google Scholar 

  122. Yuan H, Peng H-J, Li B-Q, Xie J, Kong L, Zhao M, Chen X, Huang J-Q, Zhang Q (2019) Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv Energy Mater 9(1):1802768. https://doi.org/10.1002/aenm.201802768

    Article  CAS  Google Scholar 

  123. Zhao M, Peng HJ, Wei JY, Huang JQ, Li BQ, Yuan H, Zhang Q (2019) Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 4(6):1900344. https://doi.org/10.1002/smtd.201900344

    Article  CAS  Google Scholar 

  124. Geng C, Hua W, Wang D, Ling G, Zhang C, Yang QH (2021) Demystifying the catalysis in lithium–sulfur batteries: characterization methods and techniques. SusMat. https://doi.org/10.1002/sus2.5

    Article  Google Scholar 

  125. Dai C, Lim J-M, Wang M, Hu L, Chen Y, Chen Z, Chen H, Bao S-J, Shen B, Li Y, Henkelman G, Xu M (2018) Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv Funct Mater 28(14). https://doi.org/10.1002/adfm.201704443

  126. Zhou F, Li Z, Luo X, Wu T, Jiang B, Lu L-L, Yao H-B, Antonietti M, Yu S-H (2018) Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries. Nano Lett 18(2):1035–1043. https://doi.org/10.1021/acs.nanolett.7b04505

    Article  CAS  Google Scholar 

  127. Li Z, Zhang J, Guan B, Wang D, Liu L-M, Lou XW (2016) A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat Commun 7(1). https://doi.org/10.1038/ncomms13065

  128. Jiao L, Zhang C, Geng C, Wu S, Li H, Lv W, Tao Y, Chen Z, Zhou G, Li J, Ling G, Wan Y, Yang QH (2019) Capture and catalytic conversion of polysulfides by in situ built TiO2‐MXene heterostructures for lithium–sulfur batteries. Adv Energy Mater 9(19). https://doi.org/10.1002/aenm.201900219

  129. Wang H, Adams BD, Pan H, Zhang L, Han KS, Estevez L, Lu D, Jia H, Feng J, Guo J, Zavadil KR, Shao Y, Zhang J-G (2018) Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions. Adv Energy Mater 8(21). https://doi.org/10.1002/aenm.201800590

  130. Mertens A, Vinke IC, Tempel H, Kungl H, de Haart LGJ, Eichel R-A, Granwehr J (2016) Quantitative analysis of time-domain supported electrochemical impedance spectroscopy data of Li-ion batteries: reliable activation energy determination at low frequencies. J Electrochem Soc 163(7):H521–H527. https://doi.org/10.1149/2.0511607jes

    Article  CAS  Google Scholar 

  131. Shen Z, Cao M, Zhang Z, Pu J, Zhong C, Li J, Ma H, Li F, Zhu J, Pan F, Zhang H (2019) Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh‐loading lithium–sulfur conversion in a microreactor‐like battery. Adv Funct Mater 30(3). https://doi.org/10.1002/adfm.201906661

  132. Peng L, Wei Z, Wan C, Li J, Chen Z, Zhu D, Baumann D, Liu H, Allen CS, Xu X, Kirkland AI, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X (2020) A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal. https://doi.org/10.1038/s41929-020-0498-x

    Article  Google Scholar 

  133. Lei T, Chen W, Huang J, Yan C, Sun H, Wang C, Zhang W, Li Y, Xiong J (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater 7(4). https://doi.org/10.1002/aenm.201601843

  134. Xu Z-L, Kim SJ, Chang D, Park K-Y, Dae KS, Dao KP, Yuk JM, Kang K (2019) Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ Sci 12(10):3144–3155. https://doi.org/10.1039/c9ee01338e

    Article  CAS  Google Scholar 

  135. Su D, Cortie M, Fan H, Wang G (2017) Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv Mater 29(48). https://doi.org/10.1002/adma.201700587

  136. Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z, Ma X, Gupta T, Singh CV, Ren W, Cheng H-M, Koratkar N (2017) Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv Mater 29(2). https://doi.org/10.1002/adma.201602734

  137. Levin BDA, Zachman MJ, Werner JG, Sahore R, Nguyen KX, Han Y, Xie B, Ma L, Archer LA, Giannelis EP, Wiesner U, Kourkoutis LF, Muller DA (2017) Characterization of sulfur and nanostructured sulfur battery cathodes in electron microscopy without sublimation artifacts. Microsc Microanal 23(1):155–162. https://doi.org/10.1017/s1431927617000058

    Article  CAS  Google Scholar 

  138. Ferreira AGM, Lobo LQ (2011) The low-pressure phase diagram of sulfur. J Chem Thermodyn 43(2):95–104. https://doi.org/10.1016/j.jct.2010.07.007

    Article  CAS  Google Scholar 

  139. Raiß C, Peppler K, Janek J, Adelhelm P (2014) Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79:245–255. https://doi.org/10.1016/j.carbon.2014.07.065

    Article  CAS  Google Scholar 

  140. Zhang J, Huang M, Xi B, Mi K, Yuan A, Xiong S (2018) Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv Energy Mater 8(2). https://doi.org/10.1002/aenm.201701330

  141. Cheng Z, Xiao Z, Pan H, Wang S, Wang R (2018) Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv Energy Mater 8(10). https://doi.org/10.1002/aenm.201702337

  142. Pang Y, Wei J, Wang Y, Xia Y (2018) Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv Energy Mater 8(10). https://doi.org/10.1002/aenm.201702288

  143. Wang X, Yang C, Xiong X, Chen G, Huang M, Wang J-H, Liu Y, Liu M, Huang K (2019) A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater 16:344–353. https://doi.org/10.1016/j.ensm.2018.06.015

    Article  Google Scholar 

  144. Ye Z, Jiang Y, Qian J, Li W, Feng T, Li L, Wu F, Chen R (2019) Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy 64. https://doi.org/10.1016/j.nanoen.2019.103965

  145. Zhou G, Zhao S, Wang T, Yang S-Z, Johannessen B, Chen H, Liu C, Ye Y, Wu Y, Peng Y, Liu C, Jiang SP, Zhang Q, Cui Y (2019) Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett 20(2):1252–1261. https://doi.org/10.1021/acs.nanolett.9b04719

    Article  CAS  Google Scholar 

  146. Hong X-J, Tan T-X, Guo Y-K, Tang X-Y, Wang J-Y, Qin W, Cai Y-P (2018) Confinement of polysulfides within bi-functional metal–organic frameworks for high performance lithium–sulfur batteries. Nanoscale 10(6):2774–2780. https://doi.org/10.1039/c7nr07118c

    Article  CAS  Google Scholar 

  147. Xue W, Shi Z, Suo L, Wang C, Wang Z, Wang H, So KP, Maurano A, Yu D, Chen Y, Qie L, Zhu Z, Xu G, Kong J, Li J (2019) Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat Energy 4(5):374–382. https://doi.org/10.1038/s41560-019-0351-0

    Article  CAS  Google Scholar 

  148. Sun Q, Xi B, Li J-Y, Mao H, Ma X, Liang J, Feng J, Xiong S (2018) Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv Energy Mater 8(22). https://doi.org/10.1002/aenm.201800595

  149. Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed 54(13):3907–3911. https://doi.org/10.1002/anie.201410174

    Article  CAS  Google Scholar 

  150. Al Salem H, Babu G, Rao VC, Arava LMR (2015) Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J Am Chem Soc 137(36):11542–11545. https://doi.org/10.1021/jacs.5b04472

  151. Yang X, Gao X, Sun Q, Jand SP, Yu Y, Zhao Y, Li X, Adair K, Kuo LY, Rohrer J, Liang J, Lin X, Banis MN, Hu Y, Zhang H, Li X, Li R, Zhang H, Kaghazchi P, Sham TK, Sun X (2019) Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high‐sulfur‐loading Li–S batteries. Adv Mater 31(25). https://doi.org/10.1002/adma.201901220

  152. Zhang L, Qian T, Zhu X, Hu Z, Wang M, Zhang L, Jiang T, Tian JH, Yan C (2019) In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem Soc Rev 48(22):5432–5453. https://doi.org/10.1039/c9cs00381a

    Article  CAS  Google Scholar 

  153. Huang S, Lim YV, Zhang X, Wang Y, Zheng Y, Kong D, Ding M, Yang SA, Yang HY (2018) Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 51:340–348. https://doi.org/10.1016/j.nanoen.2018.06.052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, W. et al. (2022). Catalytic Conversion of Polysulfides in Li–S Batteries. In: Manthiram, A., Fu, Y. (eds) Advances in Rechargeable Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-90899-7_5

Download citation

Publish with us

Policies and ethics