Skip to main content

Principles and Challenges of Lithium–Sulfur Batteries

  • Chapter
  • First Online:
Advances in Rechargeable Lithium–Sulfur Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 59))

Abstract

The invention and adoption of lithium-ion batteries has catalyzed massive technological and societal progress over the past few decades. While lithium-ion batteries will continue to show considerable promise for a large range of applications, there are several critical use-cases that require order-of-magnitude increases in the battery’s ability to store energy per unit mass. This will necessitate the development of novel battery chemistries with increased specific energy, such as the lithium–sulfur (Li–S) batteries. Using sulfur active material in the cathode presents several desirable properties, such as a low-cost, widespread geological abundance, and a high specific capacity. However, the Li–S conversion chemistry operates in a highly distinct manner from traditional insertion electrodes; discharge of elemental sulfur produces lithium polysulfide intermediates that dissolve into the liquid electrolyte and mediate the charge-transfer process in solution. This phenomenon is accompanied by the unique challenges presented from the reactive and unstable lithium-metal anode. In conjunction, this introduces tremendous complexity and opportunity in the analysis and design of Li–S batteries. In this chapter, the operating principles and challenges of Li–S batteries are first introduced, and then the historical progress and future directions are discussed on a component-by-component basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-15355-0

    Article  Google Scholar 

  2. Goodenough JB (2018) How we made the Li-ion rechargeable battery. Nat Electron 1:204

    Article  Google Scholar 

  3. Li W, Erickson EM, Manthiram A (2020) High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 5:26–34. https://doi.org/10.1038/s41560-019-0513-0

    Article  CAS  Google Scholar 

  4. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2009) Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 25:12766–12770. https://doi.org/10.1021/la901829v

    Article  CAS  Google Scholar 

  5. Xu K, Von Cresce A, Lee U (2010) Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26:11538–11543. https://doi.org/10.1021/la1009994

    Article  CAS  Google Scholar 

  6. Liu J, Zhang JG, Yang Z, Lemmon JP, Imhoff C, Graff GL, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li X, Shao Y, Schwenzer B (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23:929–946. https://doi.org/10.1002/adfm.201200690

    Article  CAS  Google Scholar 

  7. Halpert G, Frank H, Surampudi S (1999) Batteries and fuel cells in space. Electrochem Soc Interface 8:25–30

    Article  CAS  Google Scholar 

  8. Gupta A, Bhargav A, Jones JP, Bugga RV, Manthiram A (2020) Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries. Chem Mater 32:2070–2077. https://doi.org/10.1021/acs.chemmater.9b05164

    Article  CAS  Google Scholar 

  9. Krishnamurthy V, Viswanathan V (2020) Beyond transition metal oxide cathodes for electric aviation: the case of rechargeable CF x. ACS Energy Lett 3330–3335. https://doi.org/10.1021/acsenergylett.0c01815

  10. Sharma SS, Manthiram A (2020) Towards more environmentally and socially responsible batteries. Energy Environ Sci 13:4087–4097. https://doi.org/10.1039/d0ee02511a

    Article  CAS  Google Scholar 

  11. Li L, Deshmane VG, Paranthaman MP, Bhave R, Moyer BA, Harrison S (2018) Lithium recovery from aqueous resources and batteries: a brief review. Johnson Matthey Technol Rev 62:161–176

    Article  CAS  Google Scholar 

  12. Gupta A, Manthiram A (2020) Designing advanced lithium-based batteries for low-temperature conditions. Adv Energy Mater 10:2001972. https://doi.org/10.1002/aenm.202001972

    Article  CAS  Google Scholar 

  13. Rodrigues M-TF, Babu G, Gullapalli H, Kalaga K, Sayed FN, Kato K, Joyner J, Ajayan PM (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy 2:1–14. https://doi.org/10.1038/nenergy.2017.108

    Article  CAS  Google Scholar 

  14. Manthiram A, Chung S-H, Zu C (2015) Lithium-sulfur batteries: progress and prospects. Adv Mater 27:1980–2006. https://doi.org/10.1002/adma.201405115

    Article  CAS  Google Scholar 

  15. Hong-Jie P, Jia-Qi H, Xin-Bing C, Qiang Z (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260. https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  16. Bhargav A, He J, Gupta A, Manthiram A (2020) Lithium-sulfur batteries: attaining the critical metrics. Joule 4:285–291. https://doi.org/10.1016/j.joule.2020.01.001

    Article  Google Scholar 

  17. Herbert D, Ulam J (1962) Electric dry cells and storage batteries. United States Pat. Off. Pat. US3043986

    Google Scholar 

  18. Nole DA, Moss V (1968) Battery employing lithium-sulphur electrodes with non-aqueous electrolyte—Google Patents. United States Pat. Off. US3532543A

    Google Scholar 

  19. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1981) LixCoO2 (0<x≤1): a new cathode material for batteries of high energy density. Solid State Ionics 3–4:171–174. https://doi.org/10.1016/0167-2738(81)90077-1

    Article  Google Scholar 

  20. Winter M, Barnett B, Xu K (2018) Before Li ion batteries. Chem Rev 118:11433–11456. https://doi.org/10.1021/acs.chemrev.8b00422

    Article  CAS  Google Scholar 

  21. Liu Z, Mukherjee PP (2017) Mesoscale elucidation of surface passivation in the Li-sulfur battery cathode. ACS Appl Mater Interfaces 9:5263–5271. https://doi.org/10.1021/acsami.6b15066

    Article  CAS  Google Scholar 

  22. Shen C, Xie J, Zhang M, Andrei P, Hendrickson M, Plichta EJ, Zheng JP (2017) Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim Acta 248:90–97. https://doi.org/10.1016/J.ELECTACTA.2017.07.123

    Article  CAS  Google Scholar 

  23. Gupta A, Bhargav A, Manthiram A (2018) Highly solvating electrolytes for lithium-sulfur batteries. Adv Energy Mater 1803096. https://doi.org/10.1002/aenm.201803096

  24. Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar LF (2015) Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv Energy Mater 5:1401801. https://doi.org/10.1002/aenm.201401801

    Article  CAS  Google Scholar 

  25. Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134. https://doi.org/10.1021/ar300179v

    Article  CAS  Google Scholar 

  26. Chu H, Noh H, Kim Y-J, Yuk S, Lee J-H, Lee J, Kwack H, Kim Y, Yang D-K, Kim H-T (2019) Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat Commun 10:188. https://doi.org/10.1038/s41467-018-07975-4

    Article  CAS  Google Scholar 

  27. Pan H, Han KS, Engelhard MH, Cao R, Chen J, Zhang JG, Mueller KT, Shao Y, Liu J (2018) Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv Funct Mater 1707234:1–7. https://doi.org/10.1002/adfm.201707234

    Article  CAS  Google Scholar 

  28. Mistry AN, Mukherjee PP (2018) “Shuttle” in polysulfide shuttle: friend or foe? J Phys Chem C 122:23845–23851. https://doi.org/10.1021/acs.jpcc.8b06077

    Article  CAS  Google Scholar 

  29. Shin H, Baek M, Gupta A, Char K, Manthiram A, Choi JW (2020) Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv Energy Mater 10:2001456. https://doi.org/10.1002/aenm.202001456

    Article  CAS  Google Scholar 

  30. Fan FY, Chiang Y-M (2017) Electrodeposition kinetics in Li-S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J Electrochem Soc 164:A917–A922. https://doi.org/10.1149/2.0051706jes

    Article  CAS  Google Scholar 

  31. Cao R, Xu W, Lv D, Xiao J, Zhang JG (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5:1–23. https://doi.org/10.1002/aenm.201402273

    Article  CAS  Google Scholar 

  32. Tikekar MD, Choudhury S, Tu Z, Archer LA (2016) Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 1:16114. https://doi.org/10.1038/nenergy.2016.114

    Article  CAS  Google Scholar 

  33. Liu J, Bao Z, Cui Y, Dufek EJ, Goodenough JB, Khalifah P, Li Q, Liaw BY, Liu P, Manthiram A, Meng YS, Subramanian VR, Toney MF, Viswanathan VV, Whittingham MS, Xiao J, Xu W, Yang J, Yang XQ, Zhang JG (2019) Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 4:180–186

    Article  CAS  Google Scholar 

  34. Nanda S, Gupta A, Manthiram A (2020) Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv Energy Mater 2000804. https://doi.org/10.1002/aenm.202000804

  35. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537. https://doi.org/10.1039/C3EE40795K

    Article  CAS  Google Scholar 

  36. Manthiram A (2016) Electrical energy storage: materials challenges and prospects. MRS Bull 41:624–630. https://doi.org/10.1557/mrs.2016.167

    Article  Google Scholar 

  37. Fang C, Li J, Zhang M, Zhang Y, Yang F, Lee JZ, Lee MH, Alvarado J, Schroeder MA, Yang Y, Lu B, Williams N, Ceja M, Yang L, Cai M, Gu J, Xu K, Wang X, Meng YS (2019) Quantifying inactive lithium in lithium metal batteries. Nature 572:511–515. https://doi.org/10.1038/s41586-019-1481-z

    Article  CAS  Google Scholar 

  38. Pan H, Wei X, Henderson WA, Shao Y, Chen J, Bhattacharya P, Xiao J, Liu J (2015) On the way toward understanding solution chemistry of lithium polysulfides for high energy Li-S redox flow batteries. Adv Energy Mater 5:1500113. https://doi.org/10.1002/aenm.201500113

    Article  CAS  Google Scholar 

  39. Rajput NN, Murugesan V, Shin Y, Han KS, Lau KC, Chen J, Liu J, Curtiss LA, Mueller KT, Persson KA (2017) Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem Mater 29:3375–3379. https://doi.org/10.1021/acs.chemmater.7b00068

    Article  CAS  Google Scholar 

  40. Andersen A, Rajput NN, Han KS, Pan H, Govind N, Persson KA, Mueller KT, Murugesan V (2019) Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane. Chem Mater 31:2308–2319. https://doi.org/10.1021/acs.chemmater.8b03944

    Article  CAS  Google Scholar 

  41. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436. https://doi.org/10.1038/ncomms8436

    Article  CAS  Google Scholar 

  42. Nanda S, Gupta A, Manthiram A (2018) A lithium-sulfur cell based on reversible lithium deposition from a Li2S cathode host onto a hostless-anode substrate. Adv Energy Mater 8:1801556. https://doi.org/10.1002/aenm.201801556

    Article  CAS  Google Scholar 

  43. Chung S-H, Chang C-H, Manthiram A (2018) Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Funct Mater 28:1801188. https://doi.org/10.1002/adfm.201801188

    Article  CAS  Google Scholar 

  44. Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5:1401986. https://doi.org/10.1002/aenm.201401986

    Article  CAS  Google Scholar 

  45. Thieme S, Brückner J, Meier A, Bauer I, Gruber K, Kaspar J, Helmer A, Althues H, Schmuck M, Kaskel S (2015) A lithium–sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive. J Mater Chem A 3:3808–3820. https://doi.org/10.1039/C4TA06748G

    Article  CAS  Google Scholar 

  46. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506. https://doi.org/10.1038/nmat2460

    Article  CAS  Google Scholar 

  47. He J, Manthiram A (2019) A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater 20:55–70. https://doi.org/10.1016/J.ENSM.2019.04.038

    Article  Google Scholar 

  48. Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat Nanotechnol 1. https://doi.org/10.1038/s41565-018-0061-y

  49. Bugga RV, Jones SC, Pasalic J, Seu CS, Jones J-P, Torres L (2017) Metal sulfide-blended sulfur cathodes in high energy lithium-sulfur cells. J Electrochem Soc 164:A265–A276. https://doi.org/10.1149/2.0941702jes

    Article  CAS  Google Scholar 

  50. Chen S, Wang D, Zhao Y, Wang D (2018) Superior performance of a lithium-sulfur battery enabled by a dimethyl trisulfide containing electrolyte. Small Methods 2:1800038. https://doi.org/10.1002/smtd.201800038

    Article  CAS  Google Scholar 

  51. Ye H, Lee JY (2020) Solid additives for improving the performance of sulfur cathodes in lithium-sulfur batteries—adsorbents, mediators, and catalysts. Small Methods 4:1900864. https://doi.org/10.1002/smtd.201900864

    Article  CAS  Google Scholar 

  52. Pang Q, Liang X, Kwok CY, Kulisch J, Nazar LF (2017) A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv Energy Mater 7:1–9. https://doi.org/10.1002/aenm.201601630

    Article  CAS  Google Scholar 

  53. Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang JG, Whittingham MS, Xiao J, Liu J (2019) High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat Energy 4:551–559. https://doi.org/10.1038/s41560-019-0390-6

    Article  CAS  Google Scholar 

  54. Weber R, Genovese M, Louli AJ, Hames S, Martin C, Hill IG, Dahn JR (2019) Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy 4:683–689. https://doi.org/10.1038/s41560-019-0428-9

    Article  CAS  Google Scholar 

  55. Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, Zhao J, Chu S, Cui Y (2016) Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 1. https://doi.org/10.1038/NENERGY.2016.10

  56. Cao X, Ren X, Zou L, Engelhard MH, Huang W, Wang H, Matthews BE, Lee H, Niu C, Arey BW, Cui Y, Wang C, Xiao J, Liu J, Xu W, Zhang JG (2019) Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy 4:796–805. https://doi.org/10.1038/s41560-019-0464-5

    Article  CAS  Google Scholar 

  57. Wang J, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y (2019) Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat Energy 4:664–670. https://doi.org/10.1038/s41560-019-0413-3

    Article  CAS  Google Scholar 

  58. Li Y, Sun Y, Pei A, Chen K, Vailionis A, Li Y, Zheng G, Sun J, Cui Y (2018) Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent Sci 4:97–104. https://doi.org/10.1021/acscentsci.7b00480

    Article  CAS  Google Scholar 

  59. Chinnam PR, Wunder SL (2017) Engineered interfaces in hybrid ceramic-polymer electrolytes for use in all-solid-state Li batteries. ACS Energy Lett 2:134–138. https://doi.org/10.1021/acsenergylett.6b00609

    Article  CAS  Google Scholar 

  60. Pathak R, Chen K, Gurung A, Reza KM, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao Q (Quinn) (2020) Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-019-13774-2

  61. Chu H, Jung J, Noh H, Yuk S, Lee J, Lee J, Baek J, Roh Y, Kwon H, Choi D, Sohn K, Kim Y, Kim H (2020) Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium-sulfur batteries. Adv Energy Mater 2000493. https://doi.org/10.1002/aenm.202000493

  62. Gupta A, Bhargav A, Manthiram A (2020) Evoking high-donor-number-assisted and organosulfur-mediated conversion in lithium-sulfur batteries. ACS Energy Lett 224–231. https://doi.org/10.1021/acsenergylett.0c02461

  63. Zheng J, Ji G, Fan X, Chen J, Li Q, Wang H, Yang Y, DeMella KC, Raghavan SR, Wang C (2019) High-fluorinated electrolytes for Li–S batteries. Adv Energy Mater 9:1803774. https://doi.org/10.1002/aenm.201803774

    Article  CAS  Google Scholar 

  64. Yang B, Jiang H, Zhou Y, Liang Z, Zhao T, Lu YC (2019) Critical role of anion donicity in Li2S deposition and sulfur utilization in Li-S batteries. ACS Appl Mater Interfaces 11:25940–25948. https://doi.org/10.1021/acsami.9b07048

    Article  CAS  Google Scholar 

  65. Sun K, Li N, Su D, Gan H (2019) Electrolyte concentration effect on sulfur utilization of Li-S batteries. J Electrochem Soc 166:A50–A58. https://doi.org/10.1149/2.0161902jes

    Article  CAS  Google Scholar 

  66. Zou Q, Lu Y-C (2016) Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study. J Phys Chem Lett 7:1518–1525. https://doi.org/10.1021/acs.jpclett.6b00228

    Article  CAS  Google Scholar 

  67. Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. https://doi.org/10.1038/ncomms2513

    Article  CAS  Google Scholar 

  68. Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang J-G (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 26:7094–7102. https://doi.org/10.1002/adfm.201602353

    Article  CAS  Google Scholar 

  69. Chen L, Zhang J, Li Q, Vatamanu J, Ji X, Pollard TP, Cui C, Hou S, Chen J, Yang C, Ma L, Ding MS, Garaga M, Greenbaum S, Lee HS, Borodin O, Xu K, Wang C (2020) A 63 m superconcentrated aqueous electrolyte for high-energy Li-ion batteries. ACS Energy Lett 5:968–974. https://doi.org/10.1021/acsenergylett.0c00348

    Article  CAS  Google Scholar 

  70. Li Z, Zhou Y, Wang Y, Lu YC (2019) Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater 9:1802207. https://doi.org/10.1002/aenm.201802207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under award number DE-SC0005397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Manthiram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Manthiram, A. (2022). Principles and Challenges of Lithium–Sulfur Batteries. In: Manthiram, A., Fu, Y. (eds) Advances in Rechargeable Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-90899-7_1

Download citation

Publish with us

Policies and ethics