Skip to main content

Developing a Deep Learning Based Approach for Anomalies Detection from EEG Data

Part of the Lecture Notes in Computer Science book series (LNISA,volume 13080)

Abstract

Electroencephalography (EEG) contribute a leading role in brain studies, mental and brain diseases and disorders diagnosis, and treatments. Traditional Machine Learning (TML) approaches are employed in most of the recent efforts in identifying the anomalies from EEG data. But their shallowed architecture is one of the reasons why they fail to detect correctly and efficiently. Furthermore, these systems need to be fed the discriminant features manually. To overcome these issues, this study aims to develop an EEG data analysis system involving a multi-layer Gated Recurrent Unit (GRU) for anomalies detection. There are four steps to the suggested framework: (1) Collecting Raw EEG Data, (2) Data pre-processing (de-noising, segmenting, and down-sampling), (3) discover hidden significant characteristics of EEG data and classification using GRU based scheme, and (4) model’s performance evaluation. Our proposed model is tested on a publicly available EEG dataset and achieved 96.91% of accuracy, 97.95% of sensitivity, 96.16% of specificity and 96.39% of F1 score. This study will guide the future bio-medical researchers and technology experts to have a deep learning based automated anomaly detection system from EEG data.

Keywords

  • Gated Recurrent Unit
  • EEG
  • Deep learning
  • Data mining
  • Mild cognitive impairment

Supported by Australian Research Council.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Alvi, A.M., Basher, S.F., Himel, A.H., Sikder, T., Islam, M., Rahman, R.M.: An adaptive grayscale image de-noising technique by fuzzy inference system. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1301–1308. IEEE (2017)

    Google Scholar 

  3. Alvi, A.M., Shaon, M.F.I., Das, P.R., Mustafa, M., Bari, M.R.: Automated course management system. In: 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 161–166. IEEE (2017)

    Google Scholar 

  4. Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. (2021, early access). https://doi.org/10.1007/s10462-021-10062-8

  5. Alvi, A.M., Siuly, S., Wang, H., Sun, L., Cao, J.: An adaptive image smoothing technique based on localization. In: Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020), pp. 866–873. World Scientific (2020)

    Google Scholar 

  6. Amezquita-Sanchez, J.P., Mammone, N., Morabito, F.C., Marino, S., Adeli, H.: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Meth. 322, 88–95 (2019)

    CrossRef  Google Scholar 

  7. Chen, H., Song, Y., Li, X.: A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 356, 83–96 (2019)

    CrossRef  Google Scholar 

  8. Chollet, F.: Deep Learning with Python. Simon and Schuster, Manhattan (2017)

    Google Scholar 

  9. Delorme, A., et al.: EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput. Intell. Neurosci. 2011, 130714 (2011)

    CrossRef  Google Scholar 

  10. Deng, L., Liu, Y.: Deep Learning in Natural Language Processing. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5209-5

  11. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2

    CrossRef  Google Scholar 

  12. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020, early access)

    Google Scholar 

  13. Hadiyoso, S., La Febry, A., Mengko, T.L.E., Zakaria, H.: Early detection of mild cognitive impairment using quantitative analysis of EEG signals. In: 2019 2nd International Conference on Bioinformatics, Biotechnology and Biomedical Engineering (BioMIC)-Bioinformatics and Biomedical Engineering, vol. 1, pp. 1–5. IEEE (2019)

    Google Scholar 

  14. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020)

    CrossRef  Google Scholar 

  15. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2018). https://doi.org/10.1007/s11280-018-0639-1

    CrossRef  Google Scholar 

  16. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    CrossRef  Google Scholar 

  17. Kashefpoor, M., Rabbani, H., Barekatain, M.: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. J. Med. Sig. Sens. 6(1), 25 (2016)

    CrossRef  Google Scholar 

  18. Kashefpoor, M., Rabbani, H., Barekatain, M.: EEG signals from normal and mci (mild cognitive impairment) cases (2016). http://ww25.biosigdata.com/?download=eegsignals-from-normal-and-mci-cases. Accessed 2 Nov 2019

  19. Kashefpoor, M., Rabbani, H., Barekatain, M.: Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis. Biomed. Sig. Process. Control 53, 101559 (2019)

    CrossRef  Google Scholar 

  20. Kelleher, J.D.: Deep Learning. MIT Press, Cambridge (2019)

    CrossRef  Google Scholar 

  21. Kraus, M., Feuerriegel, S., Oztekin, A.: Deep learning in business analytics and operations research: models, applications and managerial implications. Eur. J. Oper. Res. 281(3), 628–641 (2020)

    CrossRef  Google Scholar 

  22. Ois, C.F.: Keras (2015). https://github.com/fchollet/keras. Accessed 18 Mar 2021

  23. Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)

    CrossRef  Google Scholar 

  24. Siuly, S., Li, Y., Zhang, Y.: EEG signal analysis and classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 141–4 (2016)

    Google Scholar 

  25. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1

    CrossRef  Google Scholar 

  26. Tawhid, M.N.A., Siuly, S., Wang, H., Whittaker, F., Wang, K., Zhang, Y.: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE 16(6), e0253094 (2021)

    CrossRef  Google Scholar 

  27. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  28. Vrbancic, G., Podgorelec, V.: Automatic classification of motor impairment neural disorders from EEG signals using deep convolutional neural networks. Elektronika ir Elektrotechnika 24(4), 3–7 (2018)

    CrossRef  Google Scholar 

  29. Yang, D., et al.: Detection of mild cognitive impairment using convolutional neural network: temporal-feature maps of functional near-infrared spectroscopy. Front. Aging Neurosci. 12, 141 (2020)

    CrossRef  Google Scholar 

  30. Yin, J., Cao, J., Siuly, S., Wang, H.: An integrated mci detection framework based on spectral-temporal analysis. Int. J. Autom. Comput. 16(6), 786–799 (2019)

    CrossRef  Google Scholar 

  31. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Disc. 8(4), e1253 (2018)

    Google Scholar 

  32. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. (2020, early access)

    Google Scholar 

  33. Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., Telenti, A.: A primer on deep learning in genomics. Nat. Genet. 51(1), 12–18 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashik Mostafa Alvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvi, A.M., Siuly, S., Wang, H. (2021). Developing a Deep Learning Based Approach for Anomalies Detection from EEG Data. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90888-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90887-4

  • Online ISBN: 978-3-030-90888-1

  • eBook Packages: Computer ScienceComputer Science (R0)