Abstract
Electroencephalography (EEG) contribute a leading role in brain studies, mental and brain diseases and disorders diagnosis, and treatments. Traditional Machine Learning (TML) approaches are employed in most of the recent efforts in identifying the anomalies from EEG data. But their shallowed architecture is one of the reasons why they fail to detect correctly and efficiently. Furthermore, these systems need to be fed the discriminant features manually. To overcome these issues, this study aims to develop an EEG data analysis system involving a multi-layer Gated Recurrent Unit (GRU) for anomalies detection. There are four steps to the suggested framework: (1) Collecting Raw EEG Data, (2) Data pre-processing (de-noising, segmenting, and down-sampling), (3) discover hidden significant characteristics of EEG data and classification using GRU based scheme, and (4) model’s performance evaluation. Our proposed model is tested on a publicly available EEG dataset and achieved 96.91% of accuracy, 97.95% of sensitivity, 96.16% of specificity and 96.39% of F1 score. This study will guide the future bio-medical researchers and technology experts to have a deep learning based automated anomaly detection system from EEG data.
Keywords
- Gated Recurrent Unit
- EEG
- Deep learning
- Data mining
- Mild cognitive impairment
Supported by Australian Research Council.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)
Alvi, A.M., Basher, S.F., Himel, A.H., Sikder, T., Islam, M., Rahman, R.M.: An adaptive grayscale image de-noising technique by fuzzy inference system. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1301–1308. IEEE (2017)
Alvi, A.M., Shaon, M.F.I., Das, P.R., Mustafa, M., Bari, M.R.: Automated course management system. In: 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 161–166. IEEE (2017)
Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. (2021, early access). https://doi.org/10.1007/s10462-021-10062-8
Alvi, A.M., Siuly, S., Wang, H., Sun, L., Cao, J.: An adaptive image smoothing technique based on localization. In: Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020), pp. 866–873. World Scientific (2020)
Amezquita-Sanchez, J.P., Mammone, N., Morabito, F.C., Marino, S., Adeli, H.: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Meth. 322, 88–95 (2019)
Chen, H., Song, Y., Li, X.: A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 356, 83–96 (2019)
Chollet, F.: Deep Learning with Python. Simon and Schuster, Manhattan (2017)
Delorme, A., et al.: EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput. Intell. Neurosci. 2011, 130714 (2011)
Deng, L., Liu, Y.: Deep Learning in Natural Language Processing. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5209-5
Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2
Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2020, early access)
Hadiyoso, S., La Febry, A., Mengko, T.L.E., Zakaria, H.: Early detection of mild cognitive impairment using quantitative analysis of EEG signals. In: 2019 2nd International Conference on Bioinformatics, Biotechnology and Biomedical Engineering (BioMIC)-Bioinformatics and Biomedical Engineering, vol. 1, pp. 1–5. IEEE (2019)
He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020)
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2018). https://doi.org/10.1007/s11280-018-0639-1
Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)
Kashefpoor, M., Rabbani, H., Barekatain, M.: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. J. Med. Sig. Sens. 6(1), 25 (2016)
Kashefpoor, M., Rabbani, H., Barekatain, M.: EEG signals from normal and mci (mild cognitive impairment) cases (2016). http://ww25.biosigdata.com/?download=eegsignals-from-normal-and-mci-cases. Accessed 2 Nov 2019
Kashefpoor, M., Rabbani, H., Barekatain, M.: Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis. Biomed. Sig. Process. Control 53, 101559 (2019)
Kelleher, J.D.: Deep Learning. MIT Press, Cambridge (2019)
Kraus, M., Feuerriegel, S., Oztekin, A.: Deep learning in business analytics and operations research: models, applications and managerial implications. Eur. J. Oper. Res. 281(3), 628–641 (2020)
Ois, C.F.: Keras (2015). https://github.com/fchollet/keras. Accessed 18 Mar 2021
Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)
Siuly, S., Li, Y., Zhang, Y.: EEG signal analysis and classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 141–4 (2016)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1
Tawhid, M.N.A., Siuly, S., Wang, H., Whittaker, F., Wang, K., Zhang, Y.: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE 16(6), e0253094 (2021)
Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)
Vrbancic, G., Podgorelec, V.: Automatic classification of motor impairment neural disorders from EEG signals using deep convolutional neural networks. Elektronika ir Elektrotechnika 24(4), 3–7 (2018)
Yang, D., et al.: Detection of mild cognitive impairment using convolutional neural network: temporal-feature maps of functional near-infrared spectroscopy. Front. Aging Neurosci. 12, 141 (2020)
Yin, J., Cao, J., Siuly, S., Wang, H.: An integrated mci detection framework based on spectral-temporal analysis. Int. J. Autom. Comput. 16(6), 786–799 (2019)
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Disc. 8(4), e1253 (2018)
Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. (2020, early access)
Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., Telenti, A.: A primer on deep learning in genomics. Nat. Genet. 51(1), 12–18 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Alvi, A.M., Siuly, S., Wang, H. (2021). Developing a Deep Learning Based Approach for Anomalies Detection from EEG Data. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-90888-1_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90887-4
Online ISBN: 978-3-030-90888-1
eBook Packages: Computer ScienceComputer Science (R0)