CDC: Infant Mortality. Centers for Disease Control and Prevention (2018). https://www.cdc.gov/reproductivehealth/MaternalInfantHealth/InfantMortality.htm. Accessed 14 July 2021
World Health Organization (WHO). Millennium development goals (MDGs) (2018). http://www.who.int/topics/millennium-development-goals/about/en. Accessed 14 July 2021
World Health Organization (WHO). The global health observatory (2018). https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/infant-mortality. Accessed 14 July 2021
Vijay, J., Patel, K.K.: Risk factors of infant mortality in Bangladesh. Clin. Epidemiol. Global Health 8, 211–214 (2020)
CrossRef
Google Scholar
Hajizadeh, M., Nandi, A., Heymann, J.: Social inequality in infant mortality: what explains variation across low and middle income countries? Soc. Sci. Med. 101, 36–46 (2014)
CrossRef
Google Scholar
World Health Organization (WHO). Success factor for women’s and child’s health: Bangladesh (2015). www.who.int
Quansah, E., Ohene, L.A., Norman, L., Mireku, M.O., Karikari, T.K.: Social factors influencing child health in Ghana. PLoS One 11(1), 1–10 (2016)
CrossRef
Google Scholar
Kiross, G.T., Chojenta, C., Barker, D., Tiruye, T.Y., Loxton, D.: The effect of maternal education on infant mortality in Ethiopia: a systematic review and meta-analysis. PLoS One 14(7), e0220076 (2019)
CrossRef
Google Scholar
Dube, L., Taha, M., Asefa, H.: Determinants of infant mortality in community of Gilgel gibe field research center, Southwest Ethiopia: a matched case control study. BMC Public Health 13, 401 (2013)
CrossRef
Google Scholar
Leal, M.D., Bittencourt, S.D., Torres, R.M., Niquini, R.P., Souza, P.R., Jr.: Determinants of infant mortality in the Jequitinhonha valley and in the north and northeast regions of Brazil. Rev Saude Publica 51(12), 1–9 (2017)
Google Scholar
Khadka, K.B., Lieberman, L.S., Giedraitis, V., Bhatta, L., Pandey, G.: The socio-economic determinants of infant mortality in Nepal: analysis of Nepal demographic health survey. BMC Pediatr. 15(152), 1 (2015)
Google Scholar
Santos, S.L., Santos, L.B., Campelo, V., Silva, A.R.: Factors associated with infant mortality in a northeastern Brazilian capital. Rev. Bras. Ginecol. Obstet. 38(10), 482–491 (2016)
CrossRef
Google Scholar
Baraki, A.G., et al.: Factors affecting infant mortality in the general population: evidence from the 2016 Ethiopian demographic and health survey (EDHS); a multilevel analysis. BMC Pregnancy Childbirth 20, 299 (2020)
CrossRef
Google Scholar
Varghese, S., Prasad, J.H., Jacob, K.S.: Domestic violence as a risk factor for infant and child mortality: a community-based case-control study from southern India. Natl. Med. J. India 26(3), 142–146 (2013)
Google Scholar
Mohamoud, Y.A., Kirby, R.S., Ehrenthal, D.B.: Poverty, urban-rural classification and term infant mortality: a population-based multilevel analysis. BMC Pregnancy Childbirth 19, 40 (2019)
CrossRef
Google Scholar
de Bitencourt, F.H., Schwartz, I.V.D., Vianna, F.S.L.: Infant mortality in Brazil attributable to inborn errors of metabolism associated with sudden death: a time-series study (2002–2014). BMC Pediatr. 19, 52 (2019)
CrossRef
Google Scholar
Vilanova, C.S., et al.: The relationship between the different low birth weight strata of newborns with infant mortality and the influence of the main health determinants in the extreme south of Brazil. Popul. Health Metrics 15, 1–10 (2019)
Google Scholar
Hajipour, M., et al.: Predictive factors of infant mortality using data mining in Iran. J. Comprehen. Pediatr. 12(1), 1–8 (2021)
Google Scholar
Dancer, D., Rammohan, A., Smith, M.D.: Infant mortality and child nutrition in Bangladesh. Health Econ. 17(9), 1015–1035 (2008)
CrossRef
Google Scholar
Alghamdi, M., Al-Mallah, M., Keteyian, S., Brawner, C., Ehrman, J., Sakr, S.: Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford Exercise Testing (FIT) project. PLoS One 12, 1 (2017)
CrossRef
Google Scholar
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1
CrossRef
Google Scholar
Pandey, Y.Z.D., Yin, X., Wang, H.: Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Comput. Vision Image Underst. 155, 162–172 (2017)
CrossRef
Google Scholar
Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Image Preprocessing in Classification and Identification of Diabetic Eye Diseases. Data Sci. Eng. 1–17 (2021)
Google Scholar
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: EEG sleep stages analysis and classification based on weighed complex network features. IEEE Trans. Emerg. Topics Comput. Intell. 5, 236–246 (2018)
CrossRef
Google Scholar
Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5
CrossRef
Google Scholar
Mateen, B.A., Liley, J., Denniston, A.K., Holmes, C.C., Vollmer, S.J.: Improving the quality of machine learning in health applications and clinical research. Nat. Mach. Intell. 2(10), 554–556 (2020)
CrossRef
Google Scholar
National institute of population research and training (NIPROT), Bangladesh demographic and health survey 2017–2018. Mitra and Associates, Dhaka, Bangladesh and ICF International, Calverton, Maryland, USA (2019)
Google Scholar
R Core Team: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org
Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Statist. Softw. 36(11), 1–13 (2010)
CrossRef
Google Scholar
Igual, L., Seguí, S.: Introduction to Data Science. Springer, Cham (2017)
CrossRef
Google Scholar
Nilsson, N.L.: Introduction to Machine Learning. Stanford University, Stanford, CA (1997)
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
CrossRef
Google Scholar
Awad, M., Khanna, R.: Efficient Learning Machines. A press, Berkeley, CA (2015)
CrossRef
Google Scholar
Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Disc. 2(2), 121–167 (1998)
CrossRef
Google Scholar
Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)
CrossRef
Google Scholar
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)
CrossRef
Google Scholar
Fawcett, T.: Introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)
CrossRef
Google Scholar
Koehrsen, W.: An implementation and explanation of the random forest in Python. Towards Data Sci. 31, 1 (2018)
Google Scholar