Skip to main content

The Role of Pleura and Adipose in Lung Ultrasound AI

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12969)

Abstract

In this paper, we study the significance of the pleura and adipose tissue in lung ultrasound AI analysis. We highlight their more prominent appearance when using high-frequency linear (HFL) instead of curvilinear ultrasound probes, showing HFL reveals better pleura detail. We compare the diagnostic utility of the pleura and adipose tissue using an HFL ultrasound probe. Masking the adipose tissue during training and inference (while retaining the pleural line and Merlin’s space artifacts such as A-lines and B-lines) improved the AI model’s diagnostic accuracy.

Keywords

  • Lung ultrasound
  • Pleura
  • Linear probe
  • Deep learning

G. R. Gare and W. Chen—Equal contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90874-4_14
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-90874-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Simple, Safe, Same: Lung Ultrasound for COVID-19 - Tabular View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/record/NCT04322487?term=ultrasound+covid&draw=2&view=record

  2. Born, J., et al.: Accelerating detection of lung pathologies with explainable ultrasound image analysis. Appl. Sci. (Switzerland) 11(2) (2021). https://doi.org/10.3390/app11020672. https://www.mdpi.com/2076-3417/11/2/672

  3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    CrossRef  Google Scholar 

  4. Carrer, L., et al.: Automatic pleural line extraction and COVID-19 scoring from lung ultrasound data. IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 67(11), 2207–2217 (2020). https://doi.org/10.1109/TUFFC.2020.3005512

    CrossRef  Google Scholar 

  5. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    MathSciNet  CrossRef  Google Scholar 

  6. Gao, Y.D., et al.: Risk factors for severe and critically ill COVID-19 patients: a review. Allergy 76(2), 428–455 (2021). https://doi.org/10.1111/ALL.14657. https://onlinelibrary.wiley.com/doi/full/10.1111/all.14657

  7. Gare, G.R., et al.: Dense pixel-labeling for reverse-transfer and diagnostic learning on lung ultrasound for COVID-19 and pneumonia detection. In: Proceedings - International Symposium on Biomedical Imaging 2021-April, pp. 1406–1410 (2021). https://doi.org/10.1109/ISBI48211.2021.9433826

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90. http://image-net.org/challenges/LSVRC/2015/

  9. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015). https://arxiv.org/abs/1412.6980v9

  10. Liang, H.Y., et al.: Ultrasound in neonatal lung disease. Quan. Imaging Med, Surg. 8(5), 535–546 (2018). https://doi.org/10.21037/qims.2018.06.01. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037955/

  11. Lichtenstein, D.: Novel approaches to ultrasonography of the lung and pleural space: where are we now? (2017). https://doi.org/10.1183/20734735.004717. https://pubmed.ncbi.nlm.nih.gov/28620429/

  12. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE International Conference on Computer Vision 2019-Octob, pp. 7082–7092 (2018). http://arxiv.org/abs/1811.08383

  13. Miller, A.: Practical approach to lung ultrasound. BJA Educ. 16(2), 39–45 (2016). https://doi.org/10.1093/BJACEACCP/MKV012. https://academic.oup.com/bjaed/article/16/2/39/2897763

  14. Ni, W., et al.: Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care 2020 24(1), 1–10 (2020). https://doi.org/10.1186/S13054-020-03120-0. https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03120-0

  15. Rahman, M.M., Davis, D.N.: Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 224–228 (2013). https://doi.org/10.7763/ijmlc.2013.v3.307

  16. Roy, S., et al.: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans. Med. Imaging 39(8), 2676–2687 (2020). https://doi.org/10.1109/TMI.2020.2994459

    CrossRef  Google Scholar 

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2016). https://doi.org/10.1007/s11263-019-01228-7

    CrossRef  Google Scholar 

  18. Soldati, G., et al.: Is there a role for lung ultrasound during the COVID-19 pandemic? (2020). https://doi.org/10.1002/jum.15284. www.aium.org

  19. Soldati, G., et al.: Proposal for international standardization of the use of lung ultrasound for patients with COVID-19. J. Ultrasound Med. 39(7), 1413–1419 (2020). https://doi.org/10.1002/jum.15285. https://pubmed.ncbi.nlm.nih.gov/32227492/

  20. Taylor, A., Anjum, F., O’Rourke, M.C.: Thoracic and lung ultrasound. StatPearls (2021). https://www.ncbi.nlm.nih.gov/books/NBK500013/

  21. Xue, W., et al.: Modality alignment contrastive learning for severity assessment of COVID-19 from lung ultrasound and clinical information. Med. Image Anal. 69, 101975 (2021). https://doi.org/10.1016/j.media.2021.101975

    CrossRef  Google Scholar 

Download references

Acknowledgements

This present work was sponsored in part by US Army Medical contract W81XWH-19-C0083. We are pursuing intellectual property protection. Galeotti serves on the advisory board of Activ Surgical, Inc. He and Rodriguez are involved in the startup Elio AI, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Rajendrakumar Gare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gare, G.R. et al. (2021). The Role of Pleura and Adipose in Lung Ultrasound AI. In: , et al. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. DCL PPML LL-COVID19 CLIP 2021 2021 2021 2021. Lecture Notes in Computer Science(), vol 12969. Springer, Cham. https://doi.org/10.1007/978-3-030-90874-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90874-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90873-7

  • Online ISBN: 978-3-030-90874-4

  • eBook Packages: Computer ScienceComputer Science (R0)