Abstract
Neural networks are being increasingly used for efficient decision making in the aircraft domain. Given the safety-critical nature of the applications involved, stringent safety requirements must be met by these networks. In this work we present a formal study of two neural network-based systems developed by Boeing. The Venus verifier is used to analyse the conditions under which these systems can operate safely, or generate counterexamples that show when safety cannot be guaranteed. Our results confirm the applicability of formal verification to the settings considered.
Keywords
- Trustworthy AI
- Formal verification
- Neural networks
Work partly supported by the DARPA Assured Autonomy programme (FA8750-18-C-0095). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Approved for Public Release, Distribution Unlimited.
This is a preview of subscription content, access via your institution.
Buying options

Notes
- 1.
A linearly definable set is a set that can be expressed as a finite set of linear constraints over real-valued and integer variables.
- 2.
Note that Venus does not support the Sigmoid function used in the output layer; we therefore use its inverse to compute the preimage of \(\lambda \) and compare this value with the pre-activation value of the output node.
References
Akintunde, M., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of neural agents in non-deterministic environments. In: Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS20), pp. 25–33. IFAAMAS (2020)
Akintunde, M., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-based neural agent-environment systems. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI19), pp. 6006–6013. AAAI Press (2019)
Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.: Strong mixed-integer programming formulations for trained neural networks. Mathe. Programm., 1–37 (2020)
Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_4
Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric robustness of neural networks. In: NeurIPS19, pp. 15287–15297 (2019)
Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of neural networks via dependency analysis. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI20), pp. 3291–3299. AAAI Press (2020)
Brockman, G., et al.: OpenAI Gym. arXiv preprint 1606, 01540 (2016)
Cheng, C., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation patterns. In: Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE19), pp. 300–303. IEEE (2019)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR09), pp. 248–255. IEEE (2009)
Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer reference manual (2020). http://www.gurobi.com
Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive refinement and adversarial search. In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI20), pp. 2513–2520. IOS Press (2020)
Huth, M.A., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press (2000)
Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verifying the safety of autonomous systems with neural network controllers. ACM Trans. Embed. Comput. Syst. 20(1), 7:1–7:26 (2021)
Johnson, T., et al.: ARCH-COMP20 category report: artificial intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plants. In: Proceedings of the 7th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), pp. 107–139. EasyChair (2020)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Kouvaros, P., Lomuscio, A.: Formal verification of CNN-based perception systems. arXiv preprint arXiv:1811.11373 (2018)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/ (1998)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, L., Qi, X., Xie, T., Li, B.: SoK: certified robustness for deep neural networks. arXiv preprint arXiv:2009.04131 (2020)
Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.: Algorithms for verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)
Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)
Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. arXiv preprint arXiv:1709.06662 (2017)
Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24
Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. In: Advances in Neural Information Processing Systems (NeurIPS18), pp. 10802–10813 (2018)
Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR14) (2014)
Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_2
VNN-COMP: Verification of Neural Networks Competition (VNN-COMP20) (2020). https://sites.google.com/view/vnn20/vnncomp. Accessed 23 Mar 2021
Xiang, W.H., Rosenfeld, J., Johnson, T.: Reachable set estimation and safety verification for piecewise linear systems with neural network controllers. In: 2018 Annual American Control Conference (ACC), pp. 1574–1579. AACC (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kouvaros, P. et al. (2021). Formal Analysis of Neural Network-Based Systems in the Aircraft Domain. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-90870-6_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90869-0
Online ISBN: 978-3-030-90870-6
eBook Packages: Computer ScienceComputer Science (R0)