Skip to main content

Mathematical Work in the Digital Age. Variety of Tools and the Role of Geneses

  • Chapter
  • First Online:
Mathematical Work in Educational Context

Abstract

This chapter focuses on the particularities of mathematical work in the digital age. It opens with historical considerations that relate to the development of mathematical work to do arithmetic when symbolic or mechanical tools and algorithmic methods were used. He goes on to define the new mathematical work by introducing concepts of reference in the interaction between human and machine. The notion of valence of mathematical work makes it possible to account for the operating domain of interactions as well as for the possible adaptations of an evolving subject-milieu system, whether for the accomplishment of a task or in the course of learning mathematics. A difference between the work of the designer and that of a user is established, especially in terms of the effects on reasoning, proof, modelling activity and the creation of digital artefacts. The adaptation in a process of idoneity between the teaching and the learning project, as well as between the intention of the designer and the realisation by a user, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The etymological meaning of the word jet in English is a borrowing straddling, on the one hand, from Anglo-French jet, ‘a cast’, from Old French jeter, ‘to cast’ and from Late Latin jectare, ‘to cast’, and on the other hand, borrowing from Anglo-French geet, ‘jet’ meaning ‘stone’, from Imperial Latin gagates, ‘jet’ meaning ‘stone’ and from Ancient Greek gagatēs, ‘lignite’. The jet à la main could then be translate into something as casting to the hand with tokens on a reckoning table, while the jet à la plume, casting to the quill using an algorithm on paper. A long struggle began in the 12th century between the abacists and the algorists. Although Leonardo of Pisa recommended the use of calculation algorithms for multiplication as early as 1202, abacus calculation remained in use until the 17th century, notably by Gottfried Wilhelm Leibniz, who still used it for long calculations (Piguet & Hügli, 2004).

  2. 2.

    In our text, we use «situation/task/activity» as a compound word to avoid having to distinguish between the situation as a didactic project or staging by the teacher, the task as a job or obligation that the pupil has to carry out in a given time and under certain conditions, and the activity that refers to the actions and operations of the pupil or the teacher, possibly finalised or directed. In the conclusion, we propose to use the word task as a generic term.

  3. 3.

    In French known as multiplication par jalousie in reference to the jalousie windows (jalousie coming from the Italian for jealousy, gelosia), in which louvres are used to allow the lookout without being seen, hence the observer «jealously» guards his intimacy.

  4. 4.

    See Machine à multiplier de Léon Bollée, 1889 - La machine en fonctionnement, consulted on 15 December 2020 at https://youtu.be/Le7QIhO_7vM.

  5. 5.

    For the sake of space, we have only illustrated part of these software programs in the following sections.

  6. 6.

    Consulted on 15 December 2020 from https://scratch.mit.edu/projects/34251632/.

  7. 7.

    In the Pan-Canadian study of Buteau, Jarvis & Lavicza (2014), it was shown that 43% of more than 300 Canadian mathematicians reported using computer programs in their research, but only 18% said they used it as part of their teaching. See also the research of Broley (2015) of computer programs for research and university education in mathematics, or the work of Pérez-Sanz (2006), which is based on historical data.

  8. 8.

    The scale of this task can easily be seen by consulting the proceedings of the Espace mathématique francophone (EMF, 2021), the Conferencia Interamericana de Educación Matemática (CIAEM, 2021), the International Congress on Mathematical Education (ICME, 2021), the Reunión Latinoamericana de Educación Matemática (RELME, 2021) and the European Society for Research in Mathematics Education (CERME, 2021).

  9. 9.

    In Brousseau, the milieu is a system that is antagonistic to the subject participating in it, like a partner, in the development of mathematical knowledge. The milieu can be material, virtual, social or symbolic, and it is most often a hybridization of these modes. Certain reasoning models of the conceptions of learners, such as that of Balacheff and Margolinas (2005), place the subject-milieu interaction at the center of conceptualization. See also Coutat et al. (2016) regarding the link between the teacher and the student-milieu system when the milieu interaction combines the virtual with paper and pencil within a computing environment for human learning.

  10. 10.

    To help the reader, it is best to remember that 32 768 = 2 (8 762 + 7 622) = 215, 268 435 456 = 228 and 1 073 741 824 = 230.

  11. 11.

    Like a linguistic wink, digital artefact translates into French as «artéfact numérique», the word digital referring only to fingers, as in formal language in English. See also digital multiplication in Fig. 1.

  12. 12.

    According to the Jean Piaget Foundation (2021): «The very abstract notion of an epistemic subject characterises this part of cognitive function, which is common to all subjects of a certain level of development, and which constitutes notions used to organise, transform or explain reality. It is the centre of cognitive function rather than the cognitive system as a whole, abstractly detached from those elements of this function that are not properly cognitive».

  13. 13.

    At the time, the sharing platform Intergeo (2021) brought together the systems relative to interactive geometry in one place in order to make it easier to access the resources provided by different systems, traditions and regions (file formats, didactic documents, assessment tools, study programme content, etc.). Today it is no longer active in open access. Information on it can be found in the Sésamath journals (2021) and in The Advanced Open Source Enterprise Wiki (2021).

  14. 14.

    As an anecdote, first worksheet was uploaded in April 2011, but first official public use was with the release of GeoGebra 4.0 on 20 October 2011, although it had been available in beta before that. The first worksheet uploaded by someone who was not on the GeoGebra team was by the Catalan Carlos Giménez Esteban on 30 April (2011).

  15. 15.

    In this activity, the blue figure is an instrumented geometric figure for which there is no equivalent traditional figure, unless it is considered as a collection of known figures (point, segment, triangle, trapezoid, rectangle). This figure capable of metamorphosis plays the role of reality (or model situation) that is in relation to the model in mathematical analysis. However, the graphic representation of the function is also an instrumented representation when the red curve is plotted with the «trace» tool for point P activated, as, and to the extent that, point M moves. So then it is possible to speak of an instrumented mathematical model that is revealed within the play between the two windows.

  16. 16.

    WIRIS (2021) is a suite of tools for the teaching of mathematics that integrates perfectly with Moodle (2021), an online learning platform that allows for the creation of learning communities gathering around pedagogical content and activities.

  17. 17.

    In its general characteristics, the system allows the student to simply expressions, solve equations, factor polynomials, represent mathematical expressions graphically and write functions and draw geometric objects by hand. Nevertheless, unlike calculators like those of the Photomath type (2021), which are available in portable devices equipped with a camera, it does not recognise handwritten mathematical equations or external views and does not provide step-by-step directions on the solving process.

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274. http://doi.org/10.1023/A:1022103903080.

  • Abánades, M.A., Botana, F., Escribano, J. & Gómez-Chacón, M. I. (2014). Distintas herramientas para la enseñanza/aprendizaje del concepto de lugar geométrico. See ETM 4 (2015).

    Google Scholar 

  • Abboud-Blanchard, M., Cazes, C., & Vandebrouck, F. (2007). Teachers’ activity in exercises-based lessons some case studies. In D. Pitta-Pantazi & C. Philippou (Eds.), Proceedings of the 5th congress of the European society for research in mathematics education (pp. 1827–1836). Department of Education - University of Cyprus.

    Google Scholar 

  • Bachelard, G. (1967). La Formation de l’esprit scientifique (5e édition). Paris: Librairie philosophique J. Vrin.

    Google Scholar 

  • Balacheff, N. (2000). Entornos informáticos para la enseñanza de las matemáticas: Complejidad didáctica y expectativas. In M. Gorgorió, & J. Deulofeu (Eds.), Matemáticas y educación: Retos y cambios desde una perspectiva internacional (pp. 70–88). Editorial Grao.

    Google Scholar 

  • Balacheff, N. & Margolinas, C. (2005). Modèle de connaissances pour le calcul de situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques, 75–106. La pensée sauvage.

    Google Scholar 

  • Bartolini, M., & Maschietto, M. (2006). Macchine matematiche: dalla storia alla scuola. Milano: Springer-Verlag Mailand. http://doi.org/10.1007/88-470-0403-9

  • Béguin, P., & Rabardel, P. (2000). Concevoir pour les activités instrumentées. Revue D’intelligence Artificielle, 14(1–2), 35–54.

    Google Scholar 

  • Blossier, M., & Richard, P. R. (2012). Le travail mathématique en interaction avec un logiciel de géométrie dynamique tridimensionnelle. See ETM 3 (2014).

    Google Scholar 

  • Botana F., & Recio T. (2006). Towards solving the dynamic geometry bottleneck via a symbolic approach. In H. Hong, & D. Wang (Eds.), Automated Deduction in Geometry. ADG 2004. Lecture Notes in Computer Science, vol. 3763 (pp. 92–110). Springer. http://doi.org/10.1007/11615798_7

  • Botana, F., Hohenwarter, M., Janičić, P. Kovács, Z., Petrović, I., Recio, T. & Weitzhofer, S. (2015). Automated theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55, 39–59. http://doi.org/1007/s10817-015-9326-4

  • Brousseau, G. (1998). Théorie des situations didactiques. La Pensée Sauvage: Grenoble.

    Google Scholar 

  • Broley, L. (2015). La programmation informatique dans la recherche et la formation en mathématiques au niveau universitaire. [Mémoire de maîtrise, Université de Montréal]. https://papyrus.bib.umontreal.ca/.

  • Buteau, C., Jarvis, D., & Lavicza, Z. (2014). On the integration of computer algebra systems (CAS) by Canadian mathematicians: Results of a national survey. Canadian Journal of Science, Mathematics and Technology Education, 14(1), 35–57. http://doi.org/10.1080/14926156.2014.874614.

  • Carrión, V., & Pluvinage, F. (2012). Registros y estratos en ETM al servicio del pensamiento funcional. See ETM 3 (2014).

    Google Scholar 

  • Casyopée [Computer software]. (2021). Retrieved from https://casyopee.math.univ-paris-diderot.fr/.

  • CERME [Website]. (2021). Retrieved from https://www.mathematik.uni-dortmund.de/~erme/.

  • CIAEM [Website]. (2021). Retrieved from https://conferencia.ciaem-redumate.org/.

  • Clairaut, A. C. (1741). Élémens de Géométrie. David Fils.

    Google Scholar 

  • Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM Mathematics Education, 52(7), 1223–1242. http://doi.org/10.1007/s11858-020-01196-0.

  • Coutat, S. (2012). Quel espace de travail géométrique pour l’apprentissage des propriétés au primaire? See ETM 3 (2014).

    Google Scholar 

  • Coutat, S., Laborde, C., & Richard, P. R. (2016). L’apprentissage instrumenté de propriétés en géométrie: propédeutique à l’acquisition d’une compétence de démonstration. Educational Studies in Mathematics, 93, 195–221. http://doi.org/10.1007/s1064

  • Cyr, S. (2021). Étude des référentiels de géométrie utilisés en classe de mathématiques au secondaire. [Mémoire de maîtrise, Université de Montréal]. https://papyrus.bib.umontreal.ca/.

  • Cyr, S., Font, L., Gagnon, M., Leduc, N., Richard, P.R., & Tessier-Baillargeon, M. (2018). Creation of a mathematical model for QED-tutrix’ automated proof generator 335. See ETM 6 (2019).

    Google Scholar 

  • Drijvers, P., Kieran, C., Mariotti, M.-A., Ainley, J., Andresen, M., Chan, Y.C., & Meagher, M. (2010). Integrating technology into mathematics education: Theoretical perspectives. In Mathematics education and technology-rethinking the terrain (pp. 89–132). http://doi.org/10.1007/978-1-4419-0146-0

  • Drouard, J. P., & Kuzniak, A. (2014). Un point de vue multidimensionnel sur les outils et les instruments dans les espaces de travail mathematique. See ETM 4 (2015).

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Peter Lang, Suisse.

    Google Scholar 

  • Eco, U. (1985). Lector in fabula: ou, La coopération interprétative dans les textes narratifs. Paris: B. Grasset.

    Google Scholar 

  • EMF [Website]. (2021). Retrieved from http://emf.unige.ch/

  • Ertmer, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology integration? Educational Technology Research and Development, 53(4), 25–39. http://doi.org/10.1007/BF02504683.

  • ETM 3 [Symposium 2012]. (2014). In P. R. Richard, & A. Kuzniak (Eds.), Actes du Troisième symposium Espace de Travail Mathématique. Montréal: Publication du Laboratoire Turing.

    Google Scholar 

  • ETM 4 [Symposium 2014]. (2015). In M. I. Gómez-Chacón, J. Escribano, A. Kuzniak, P.R. Richard (Eds.), Espacio de Trabajo Matemático, Actas Cuarto Simposio Internacional ETM. Madrid: Publicaciones del Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid.

    Google Scholar 

  • ETM 5 [Symposium 2016]. (2017). M. I. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, P.R. Richard, L. Vivier (Eds.), Mathematical Working Space, Proceeding Fifth ETM Symposium. Florina, Greece: Faculty of Education - University of Western Macedonia.

    Google Scholar 

  • ETM 6 [Symposium 2018]. (2019). In E. Montoya-Delgadillo, P. R. Richard, & L. Vivier, et al. (Eds.). Sixième Symposium sur le Travail Mathématique. Valparaíso: Pontificia Universidad Católica de Valparaíso.

    Google Scholar 

  • Fibonacci, L. P. (2002). Fibonacci’s Liber Abaci. A Translation into Modern English of Leonardo Pisano’s Book of Calculation/[translated by] Laurence Sigler. New York: Springer-Verlag.

    Google Scholar 

  • Font, L., Gagnon, M., Leduc, N. & Richard, P.R. (expected early 2022) Intelligence in QED-Tutrix: Balancing the interactions between the natural intelligence of the user and the artificial intelligence of the tutor software. In P. R. Richard, M. P. Vélez, & S. van Vaerenbergh (Eds.), Mathematics education in the age of artificial intelligence. How artificial intelligence can serve the mathematical human learning. Cham: Springer International Publisher.

    Google Scholar 

  • Gaona, J. (2016). Análisis de la concepción de un banco de problemas en línea, aleatorios para la evaluación en matemáticas. See ETM 5 (2017).

    Google Scholar 

  • Gaona, J. (2018). Elaboración de un sistema de evaluación en línea como proceso de formación de profesores de matemáticas. Université Sorbonne Paris Cité - Université Paris Diderot. Retrieved from https://tel.archives-ouvertes.fr/tel-02458946/.

  • Gaona, J. (2019). Impacto de la participación de los profesores en el valor epistémico de tareas con gráficos diseñadas en una plataforma de evaluación en línea en matemáticas. See ETM 6 (2019).

    Google Scholar 

  • Gaona, J. (2020). Panorama sobre los sistemas de evaluación automática en línea en matemáticas. Revista Paradigma, 16, 53–81. http://doi.org/10.37618/PARADIGMA.1011-2251.0.

  • Gauthier, M. (2015). Enseignement de la géométrie en première secondaire et conceptions d’élèves : une oscillation entre la perception, la mesure et la théorie (Thèse de doctorat, Université de Montréal). Retrieved from https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/13047/Gauthier_Johanne_2015_these.pdf.

  • Gómez-Chacón, M. I. (2012). Geometric Locus activities in a dynamic geometry system. Non-iconic visualización and instrumental Genesis. See ETM 3 (2014).

    Google Scholar 

  • Hohenwarter, M. (2021). GeoGebra Classic 5.0 (Version 5.0.426.0-d) [Computer software and website]. Retrieved from https://www.geogebra.org/.

  • Hoyles, C., & Lagrange, J.-B. (2010). Mathematics education and technology-rethinking the terrain. Boston: Springer US. http://doi.org/10.1007/978-1-4419-0146-0.

  • ICME [Website]. (2021). Retrieved from https://www.mathunion.org/icmi

  • Intergeo [Dynamic geometry sharing platform]. (2021). Retrieved from http://i2geo.net.

  • Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A, 25(4), 369–376.

    Google Scholar 

  • Kovács, Z. (2015). The Relation Tool in GeoGebra 5. In F. Botana, & P. Quaresma (Eds.), Automated Deduction in Geometry. ADG 2014. Lecture Notes in Computer Science (Vol. 9201). Cham: Springer. http://doi.org/10.1007/978-3-319-21362-0_4.

  • Kovács, Z., Recio, T., Richard, P. R., Van Vaerenbergh, S., & Vélez, M. P. (2020). Towards an ecosystem for computer-supported geometric reasoning. International Journal of Mathematical Education in Science and Technology. http://doi.org/10.1080/0020739X.2020.1837400.

  • Kuzniak, A., Nechache, A., & Drouhard, J. P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48(6), 861–874. https://doi.org/10.1007/s11858-016-0773-0

    Article  Google Scholar 

  • Kuzniak, A., & Nechache, A. (2018). Una metodología para analizar el trabajo personal de los estudiantes en la teoría de los espacios de trabajo matemático. See ETM 6 (2019).

    Google Scholar 

  • Kuzniak, A., & Nechache, A. (2021). On forms of geometric work: a study with pre-service teachers based on the theory of mathematical working spaces. Educational Studies in Mathematics, 106(2), 271–289 (Springer). https://doi.org/10.1007/s10649-020-10011-2.

  • Lagrange, J.-B. (2014). Functions in technological environments: From multi-representations to connected workspaces. See ETM 4 (2015).

    Google Scholar 

  • Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, F. K. S. Leung (Eds.), Second international handbook of mathematics education. Springer International Handbooks of Education, vol. 10. Dordrecht: Springer. https://doi.org/10.1007/978-94-010-0273-8

  • Lagrange, J.-B. (2016). Connected working spaces for secondary students’ understanding of calculus: Modelling a suspension bridge through “jigsaw” group work. See ETM 5 (2017).

    Google Scholar 

  • Landsman, K. (2020). Randomness? What randomness? Foundations of physics. https://doi.org/10.1007/s10701-020-00318-8.

  • Lavoie, P. (1997). L’arithmétique dans les petites écoles du Bas-Canada au début du XIXe siècle. Éducation et francophonie, 25 (1).

    Google Scholar 

  • Leduc, N., Tessier-Baillargeon, M., Richard, P., & Gagnon, M. (2016). Étude prospective d’un système tutoriel à l’aide du modèle des espaces de travail mathématique. See ETM 5 (2017).

    Google Scholar 

  • López, S. (2018). La algebrización en un curso de curvas y superficies parametrizadas: una sesión de clase. See ETM 6 (2019).

    Google Scholar 

  • Ma, L. (2020). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States (3e édition). England: Routledge.

    Book  Google Scholar 

  • Mathematica [Computer software]. (2021). Retrieved from https://www.wolfram.com/mathematica/.

  • Matlab [Programming language and numeric computing environment]. (2021). Retrieved from https://www.mathworks.com/.

  • Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), 3–30. https://doi.org/10.1145/272991.272995

    Article  Google Scholar 

  • Ministère de l’éducation, ministère de l’Enseignement supérieur. (2020). Exploitation des différents sens des opérations. Retrieved from http://www.education.gouv.qc.ca/references/tx-solrtyperecherchepublicationtx-solrpublicationnouveaute/resultats-de-la-recherche/detail/article/exploitation-des-differents-sens-des-operations/.

  • Moodle [Learning management system]. (2021). Retrieved from https://moodle.org/.

  • Morales, H. (2019). Estudio de la influencia del proceso de formación docente sobre el sistema de creencias hacia el trabajo matemático del concepto de área, en estudiantes de pedagogía en matemáticas (Thèse de doctorat, Université de Montréal). Retrieved from https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/22432/Morales_Hernan_2019_these.pdf.

  • Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102, 9–28. https://doi.org/10.1007/s10649-019-09903-9

    Article  Google Scholar 

  • Nunes, T., & Bryant, P. (1996). Children doing mathematics. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Páez Murillo, R., & Vivier, L. (2014). Representaciones semióticas de las soluciones de las desigualdades lineales en una sola variable. See ETM 4 (2015).

    Google Scholar 

  • Páez Murillo, R., & Pluvinage, F. (2018). Exploración guiada en un ambiente con tecnología interactiva, caso de las ramas infinitas de una función. See ETM 6 (2019).

    Google Scholar 

  • Pérez-Sanz, A. (2006). Matemáticas en las aulas de secundaria. El profesorado de matemáticas ante las Tecnologías de la Información y la Comunicación. La gaceta de la RSME, 9(2), 521–544.

    Google Scholar 

  • Pérez, V. (2020). Du doigt à la machine, le calcul. Retrieved from https://www.arts-et-metiers.net/sites/arts-et-metiers.net/files/asset/document/pj_le_calcul.pdf.

  • Photomath [Mobile application]. (2021). Retrieved from https://photomath.app/.

  • Piguet, C., & Hügli, H. (2004). Du zéro à l’ordinateur: Une brève histoire du calcul. Presses polytechniques et universitaires romandes.

    Google Scholar 

  • QED-Tutrix [Client server application]. (2021). Retrieved from http://turing.scedu.umontreal.ca/qedx/.

  • Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Radford, L. (2014). On the role of representations and artefacts in knowing and learning. Educational Studies in Mathematics, 85(3), 405–422. https://doi.org/10.1007/s10649-013-9527-x

    Article  Google Scholar 

  • Recio, T., Richard, P. R., & Vélez, M. P. (2019). Designing tasks supported by GeoGebra Automated Reasoning Tools for the development of mathematical skills. International Journal for Technology in Mathematics Education, 26(2), 81–88. https://doi.org/10.1564/tme_v26.2.05

    Article  Google Scholar 

  • RELME [Website]. (2021). Retrieved from https://clame-relme.org.

  • Richard, P. R., Gagnon, M., & Fortuny, J. M. (2018). Connectedness of problems and impasse resolution in the solving process in geometry: A major educational challenge. In P. Herbst, U. Cheah, P. Richard, & K. Jones (Eds.), International perspectives on the teaching and learning of geometry in secondary schools (pp. 357–375). Springer. https://doi.org/10.1007/978-3-319-77476-3_20.

  • Richard, P. R., Venant, F., & Gagnon, M. (2019). Chapitre 7. Issues and challenges about instrumental proof. In G. Hanna, D. Reid, & M. de Villiers (Eds.), Proof Technology in Mathematics Research and Teaching. Cham: Springer International Publisher. https://doi.org/10.1007/978-3-030-28483-1_7.

  • Richard, P. R. (2004). Raisonnement et stratégies de preuve dans l’enseignement des mathématiques. Peter Lang.

    Google Scholar 

  • Richard, P. R., & Sierpinska, A. (2004). Étude fonctionnelle-structurelle de deux extraits de manuels anciens de géométrie. In Lemoyne, G., & Sackur, C. (Eds.), Le langage dans l’enseignement et l’apprentissage des mathématiques, Revue des sciences de l’éducation, Numéro thématique (Vol. 30, issue 2, pp. 379–409).

    Google Scholar 

  • Richard, P. R., Oller, A. M., & Meavilla, V. (2016). The concept of proof in the light of mathematical work. ZDM Mathematics Education, 48(6), 843–859. https://doi.org/10.1007/s11858-016-0805-9.

  • Richard, P. R., Vélez, M. P., & van Vaerenbergh, S. (Eds.) (expected early 2022). Mathematics education in the age of artificial intelligence. How artificial intelligence can serve the mathematical human learning. Cham: Springer International Publisher.

    Google Scholar 

  • Rivera, R., De Las Fuentes, M., & Martínez, A. D. (2014). Evaluación del uso del pizarrón electrónico como entorno tecnológico mediador para la enseñanza de tópicos del cálculo diferencial. See ETM 4 (2015).

    Google Scholar 

  • Salazar, J. V. F., & Carrillo, F. I. (2018). Función definida por tramos: Espacio de Trabajo Matemático y su relación con las representaciones semióticas. See ETM 6 (2019).

    Google Scholar 

  • Salazar, J. V. F., & Carrillo, F. I. (2019). Espacio de Trabajo Matemático Personal de profesores en relación a la función definida por tramos. Uni-Pluriversidad, 19(2), 144–160.

    Google Scholar 

  • Santos-Trigo, M., & Camacho-Machín, M. (2014). Prospective high school teachers’ coordinated use of digital technologies to extend mathematical problem-solving reasoning. See ETM 4 (2015).

    Google Scholar 

  • Scratch [Visual programming language and website]. (2021). Retrieved from https://scratch.mit.edu/.

  • Sésamath [Dynamic geometry sharing platform and educational resources]. (2021). Retrieved from http://revue.sesamath.net/spip.php?article289.

  • Taton, R. (1955). L’« Essay pour les Coniques » de Pascal. Revue D’histoire Des Sciences Et De Leurs Applications, 8(1), 1–18.

    Google Scholar 

  • Taton, R. (1979). Le calcul mental (6e édition). Presses universitaires de France.

    Google Scholar 

  • Tessier-Baillargeon, M., Leduc, N., Richard, P. R., & Gagnon, M. (2017). Étude comparative de systèmes tutoriels pour l’exercice de la démonstration en géométrie. Annales De Didactique Et De Sciences Cognitives, 22, 91–117.

    Google Scholar 

  • Tessier-Baillargeon, M., Richard, P. R., Leduc, N., & Gagnon, M. (2012). Conception et analyse de geogebraTUTOR, un système tutoriel intelligent : genèse d’un espace de travail géométrique idoine. See ETM 3 (2014).

    Google Scholar 

  • The Advanced Open Source Enterprise Wiki [Website]. (2021). Retrieved from https://www.xwiki.org/xwiki/bin/view/References/I2GEO#History.

  • Von Neumann, J. (1951). Various techniques used in connection with random digits. Appl. Math Ser, 12, 36–38.

    Google Scholar 

  • WIRIS [Client server application]. (2021). Retrieved from http://www.wiris.com/.

  • WolframAlpha [Computational knowledge engine]. (2021). Retrieved from https://www.wolframalpha.com/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe R. Richard .

Editor information

Editors and Affiliations

Appendix 1: Evolution of Instrumented Mathematical Work with Digital Artefacts in the MWS Community

Appendix 1: Evolution of Instrumented Mathematical Work with Digital Artefacts in the MWS Community

Here below, we refer to the work done in the MWS symposiums in a succinct manner. So, in ETM3 we focus on works that show semiotic and instrumental genesis. While in ETM4 and based on what was addressed in the previous symposium, in addition to the other two geneses, discursive genesis is introduced in a genesis connection. Then in ETM5, the research focused on mathematical work with a certain independence from ETM. Finally, in ETM6, the digital artefact gives a new drive to instrumental genesis, like discursive genesis (articulation of meanings + control structure par excellence). So instrumental genesis is linked in a particular manner to digital artefacts which, in turn, are linked to semiotic genesis since it can be experienced representational registers such as figures and graphs.

In this sense, at the third symposium on MWS, ETM3, the research was linked to the system of signs and semiotic genesis. The research of Blossier and Richard (2012) was aimed at accounting for the mathematical work generated by a problem that asked for the completion of the construction of a figure using the GeoGebra 3D digital artefact. The potentialities of the artefact are identified, which then allow the optimisation of the construction of an idoneous MWS. Likewise, the work of Tessier-Baillargeon et al. (2012) showed the influence of geometric working spaces on the design and validation of the geogebraTUTOR tutorial system, created for the development of geometric thinking. The design of this digital artefact consolidates the interpretation of an idoneous Geometric Working Space (GWS) in which the student is successful in solving a deductive geometry problem. For her part, Coutat (2012) presents the use of dynamic geometry software in a geometry task to analyse, in mathematical work, the different geneses that emerge and explain how the instrumental knowledge acquired by working with the software are linked to the conceptual knowledge acquired in the paper and pencil environment. Furthermore, the research of Gómez-Chacón (2012) used GeoGebra to solve problem on geometric locus and analysed how figural and instrumental geneses are articulated, proposing the need for a balance between the non-iconic visualisation and instrumental genesis. On the other hand, Carrión & Pluvinage (2012) analyse the predominance of the digital artefact in mathematical work when tasks are solved regarding real variable functions. They conclude that the use of digital technology exerts a strong influence on the solving process and conceptual handling.

In the edition of the symposium, ETM4, the research presented enriched the works presented in the ETM 3 symposium with regard to signs, genesis and artefacts. Santos-Trigo & Camacho-Machín (2014) analysed the extent that coordinated use of digital artefacts (YouTube videos, WolframAlpha and GeoGebra) favour the solving of problems that involve representation, exploration and communication of results. Their work presents a task that consists in folding a sheet of paper, which allows them to analyse and discuss how the coordinated use of various digital technologies provides opportunities to represent and explore tasks from different angles and perspectives. The research of Rivera et al. (2014) also evaluates the use of an interactive digital whiteboard to highlight its utility when addressing matters of calculating differentials. It showed that when the digital whiteboard is used, it can be a mediator of knowledge as compared to the traditional blackboard. For their part, Páez Murillo & Vivier (2014) studied the diversity of semiotic representations that arise when working on tasks regarding linear inequalities and interacting with the GeoGebra digital artefact. They showed that the use of signs and digital artefacts as vehicles of knowledge connect naturally with mathematical work and semiotic representations. While at the same time, Lagrange (2014) questioned the notion of function based on the research done in the Casyopée project, where functions were incorporated and used for work in the same functional dependency in four different settings, based on the representations of the functions. This led to the reconsideration of the notion of function and research into the potential of linked functional working spaces to design and analyse situations in technological environments. Furthermore, Abánades et al. (2014) analysed and compared the effectivity of the “Locus”, “LocusEquation” and “Locus GC” GeoGebra tools in order to solve a given task in the hopes of identifying the personal and idoneous MWS and analysed the instrumental geneses that emerge. Drouard and Kuzniak (2014) posed questions regarding the role of tools and instruments in mathematical work and introduced a multidimensional point of view on tools and instruments that resonates with the research on the domain of algebra and geometry. Finally, they explained how the different functions and use of tools and instruments in the MWS should allow for a detailed study of mathematical work.

The advances in the fifth edition of the symposium, ETM5, can be split into two groups. In the first group, the articles analysed the interaction of students with digital artefacts and, in the second group, they instead analysed the design of digital artefacts and the potential MWS they could activate. The first group included the work of Lagrange (2016), who used Casyopée as an artefact and which was developed in the Casyopée group. It presented students with a task to model a suspension bridge, in which the digital artefact allowed them to work with elements of algorithmic geometric working space, with functional working space and to connect them. It should be pointed out that unlike the other dynamic geometry software programs, Casyopée’s connection between the geometry window and the algebra window is bidirectional. This means by modifying (moving/dragging) elements of the geometric window, the parameters of the algebraic expressions are modified as well.

The second group includes the work of Leduc, Tessier-Baillargeon, Corbeil, Richard & Gagnon (2016), who presented a tutorial system called QED-Tutrix—which is both an adaption of GeoGebra and a revision of geogebraTUTOR—that helped students work a proof within a dynamic geometry environment. According to the authors, QED-Tutrix can be considered a Didactic MWS, where the artefact is an adidactic milieu. Different geneses are considered in the design of a tutorial system’s architecture, which implies more precise guidance of the students’ work. In that same group, there is the work of Gaona (2016), which analysed the design of a set of tasks in an online assessment environment with Moodle and Wiris and compared them with the paper and pencil assessments. He concludes that the idoneous MWS proposed in the platform is reduced as compared to the idoneous MWS of the platform. Nevertheless, the data presented only allow conjecture regarding these differences and the reasons behind them.

With regard to ETM6, it also saw works that analysed from the perspective of the use of digital artefacts as mediators and the design of digital artefact. In relation to the use of digital artefacts, Páez and Pluvinage (2018) used a guided examination of the interactive environment to study how the zoom command in the GeoGebra software favoured the visualisation and activation of the [Sem-Ins] and [Ins-Dis] planes in engineering students. Furthermore, Salazar and Carrillo (2018) analysed the mathematical work of students and the activation of the [Sem-Ins] and [Ins-Dis] planes based on a task on piecewise functions using a GeoGebra applet. Likewise, López (2018) studied the role of visualisation of students’ mathematical work in relation to parametric curves when the GeoGebra digital artefact was used. The work of Cyr, Font, Gagnon, Leduc, Richard and Tessier-Baillargeon (2018) and of Gaona (2018) reported on design in continuations of the work they presented at ETM 5. One of the convergent elements of these different works is related to the automatisation of a validation process of the students’ answers. In the case of Cyr and his collaborators, they addressed the small-scale automatisation of a test process, while Gaona looked at the automatisation of graph reading questions. Both of them observed that there is a concern in the design of a certain openness of the tasks so that they permit partially correct answers and as well regarding the representation of objects. These elements configure and influence the sense of the mathematical objects involved and in the potential MWS of the tasks mediated by digital artefacts.∎

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores Salazar, J.V., Gaona, J., Richard, P.R. (2022). Mathematical Work in the Digital Age. Variety of Tools and the Role of Geneses. In: Kuzniak, A., Montoya-Delgadillo, E., Richard, P.R. (eds) Mathematical Work in Educational Context. Mathematics Education in the Digital Era, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-90850-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90850-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90849-2

  • Online ISBN: 978-3-030-90850-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics