Skip to main content

DC Microgrids for Ancillary Services Provision

  • Chapter
  • First Online:
Planning and Operation of Active Distribution Networks

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 826))

  • 664 Accesses

Abstract

This chapter is dedicated to DC Microgrid’s application to provide ancillary services to weak AC grids. In particular, control algorithms are designed to provide inertial, frequency and voltage support for weak grids, such as AC Microgrids composed mainly by sources interfaced by power converters, with a small portion of diesel generators. A number of synthetic inertia approaches are introduced to improve the stability properties of an AC grid face to strong variations on loads and productions, brought by electric vehicles and possibly other renewable energy sources. The power electronic issues related to control interactions and poor inertial response are described, where suitable solution is addressed. The power converter is driven as a Virtual Synchronous Machine (VSM), where the control strategy follows classical swing equation, such that the converter emulates a synchronous generator, including inertial support. This strategy can be exploited in low inertia systems with high penetration of renewables. An application example illustrates the performance of the Microgrid in the context of virtual inertia control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Synchronous generators store kinetic energy proportional to moment of inertia J and the square of their angular speed, with time response of few seconds.

  2. 2.

    The capacitors of power converters can store electrostatic energy in order of units to hundreds of milliseconds.

  3. 3.

    Usually, VSC have outer voltage control loop and an inner control loop, which is the current control loop.

  4. 4.

    Frequency Nadir is defined as the minimum value of frequency reached during the transient period.

  5. 5.

    Nominal frequency in this case is 60 Hz.

  6. 6.

    Note that VSM is said as the VSC operating as a synchronous machine.

  7. 7.

    The comparison can also be done with moment of inertia J.

  8. 8.

    Power converter units can be understand as a generalization for DER integrated via power converters.

  9. 9.

    PLL performance problems can also be cited here, since may bring steady-state errors and instability mainly in weak grids application. So, this approach requires robust PLL implementation [70].

  10. 10.

    The swing equation of VSM allows interactions with the grid frequency, influencing its behavior.

References

  1. Ashabani SM, Mohamed RI, YA (2014) New family of microgrid control and management strategies in smart distribution grids; analysis, comparison and testing. IEEE Tran Power Syst 29(5):2257–2269

    Google Scholar 

  2. Boicea VA (2014) Energy storage technologies: the past and the present. Proc IEEE 102(11):1777–1794

    Article  Google Scholar 

  3. Dragičević T, Lu X, Vasquez JC, Guerrero JM (2015) Dc microgrids-part i: a review of control strategies and stabilization techniques. IEEE Trans Power Electron 31(7):4876–4891

    Google Scholar 

  4. Meng L, Shafiee Q, Trecate GF, Karimi H, Fulwani D, Lu X, Guerrero JM (2017) Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE J Emerg Selected Top Power Electron 5(3):928–948

    Google Scholar 

  5. Tucci M, Riverso S, Vasquez JC, Guerrero JM, Ferrari-Trecate G (2016) A decentralized scalable approach to voltage control of dc islanded microgrids. IEEE Trans Control Syst Technol 24(6):1965–1979

    Article  Google Scholar 

  6. Kumar D, Zare F, Ghosh A (2017) Dc microgrid technology: system architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. Ieee Access 5:12230–12256

    Article  Google Scholar 

  7. Olivares DE, Mehrizi-Sani A, Etemadi AH, Cañizares CA, Iravani R, Kazerani M, Hajimiragha AH, Gomis-Bellmunt O, Saeedifard M, Palma-Behnke R, Jiménez-Estévez GA, Hatziargyriou ND (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919

    Article  Google Scholar 

  8. Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3(4):1963–1976

    Article  Google Scholar 

  9. Yang N, Nahid-Mobarakeh B, Gao F, Paire D, Miraoui A, Liu W (2016) Modeling and stability analysis of multi-time scale dc microgrid. Electr Power Syst Res 140:906–916

    Article  Google Scholar 

  10. Bevrani H, François B, Ise T (2017) Microgrid dynamics and control. Wiley

    Google Scholar 

  11. Sahoo SK, Sinha AK, Kishore N (2017) Control techniques in ac, dc, and hybrid ac-dc microgrid: a review. IEEE J Emerg Selected Top Power Electron 6(2):738–759

    Article  Google Scholar 

  12. Makrygiorgou DI, Alexandridis AT (2017) Stability analysis of dc distribution systems with droop-based charge sharing on energy storage devices. Energies 10(4):433

    Article  Google Scholar 

  13. Magne P, Nahid-Mobarakeh B, Pierfederici S (2012) General active global stabilization of multiloads dc-power networks. IEEE Trans Power Electron 27(4):1788–1798

    Article  Google Scholar 

  14. Tahim APN, Pagano DJ, Lenz E, Stramosk V (2015) Modeling and stability analysis of islanded dc microgrids under droop control. IEEE Trans Power Electron 30(8):4597–4607

    Article  Google Scholar 

  15. Dragičević T, Lu X, Vasquez JC, Guerrero JM (2016) Dc microgrids-part i: a review of control strategies and stabilization techniques. IEEE Trans Power Electron 31(7):4876–4891

    Google Scholar 

  16. Iovine A, Siad SB, Damm G, Santis ED, Benedetto MDD (2017) Nonlinear control of a dc microgrid for the integration of photovoltaic panels. IEEE Trans Autom Sci Eng 14(2):524–535

    Article  Google Scholar 

  17. Iovine A, Rigaut T, Damm G, De Santis E, Di Benedetto MD (2019) Power management for a dc microgrid integrating renewables and storages. Cont Eng Pract 85:59–79

    Article  Google Scholar 

  18. Iovine A, Siad SB, Damm G, Santis ED, Benedetto MDD (2016) Nonlinear control of an ac-connected dc microgrid. In: IECON 2016—42nd annual conference of the IEEE industrial electronics society, pp 4193–4198

    Google Scholar 

  19. Perez F, Iovine A, Damm G, Ribeiro P (2018) DC microgrid voltage stability by dynamic feedback linearization. In: 2018 IEEE international conference on industrial technology (ICIT), pp 129–134

    Google Scholar 

  20. Perez F, Iovine A, Damm G, Galai-Dol L, Ribeiro P (2019) Regenerative braking control for trains in a dc microgrid using dynamic feedback linearization techniques. IFAC-PapersOnLine 52(4):401–406

    Article  Google Scholar 

  21. Iovine A, Jimenez Carrizosa M, Damm G, Alou P (2018) Nonlinear control for DC microGrids enabling efficient renewable power integration and ancillary services for AC grids. IEEE Trans Power Syst pp 1

    Google Scholar 

  22. Perez F, Damm G, Ribeiro P, Lamnabhi-Lagarrigue F, Galai-Dol L (2019a) A nonlinear distributed control strategy for a dc microgrid using hybrid energy storage for voltage stability. In: 2019 IEEE 58th conference on decision and control (CDC). IEEE, pp 5168–5173

    Google Scholar 

  23. Chen Y, Damm G, Benchaib A, amnabhi-Lagarrigue F (2014) Feedback linearization for the DC voltage control of a VSC-HVDC terminal. In: European control conference (ECC), pp 1999–2004

    Google Scholar 

  24. Gonzalez-Torres JC, Damm G, Costan V, Benchaib A, Lamnabhi-Lagarrigue F (2020). Transient stability of power systems withembedded vsc-hvdc links: Stability margins analysis and control. IET Generat Trans Distrib

    Google Scholar 

  25. Carrizosa J, Arzandé MA, Dorado Navas F, Damm G, Vannier JC (2018) A control strategy for multiterminal DC grids with renewable production and storage devices. IEEE Trans Susta Energy 9(2):930–939

    Article  Google Scholar 

  26. Bordons C, Garcia-Torres F, Ridao MA (2020) Model predictive control of microgrids. Springer

    Google Scholar 

  27. Parisio A, Rikos E, Glielmo L (2014) A model predictive control approach to microgrid operation optimization. IEEE Trans Cont Syst Technol 22(5):1813–1827

    Article  Google Scholar 

  28. Arnold M, Negenborn RR, Andersson G, De Schutter B (2009) Model-based predictive control applied to multi-carrier energy systems. In: 2009 IEEE power and energy society general meeting. IEEE, pp 1–8

    Google Scholar 

  29. Vasquez JC, Guerrero JM, Miret J, Castilla M, De Vicuna LG (2010) Hierarchical control of intelligent microgrids. IEEE Ind Electron Magaz 4(4):23–29

    Article  Google Scholar 

  30. De Brabandere K, Bolsens B, Van den Keybus J, Woyte A, Driesen J, Belmans R (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Google Scholar 

  31. Tayab UB, Roslan MAB, Hwai LJ, Kashif M (2017) A review of droop control techniques for microgrid. Renew Sustain Energy Rev 76:717–727

    Article  Google Scholar 

  32. Milano F, Dörfler F, Hug G, Hill DJ, Verbič G (2018) Foundations and challenges of low-inertia systems. In: 2018 power systems computation conference (PSCC). IEEE, pp 1–25

    Google Scholar 

  33. Tielens P, Van Hertem D (2016) The relevance of inertia in power systems. Renew Sustain Energy Rev 55:999–1009

    Article  Google Scholar 

  34. Winter W, Elkington K, Bareux G, Kostevc J (2014) Pushing the limits: Europe’s new grid: innovative tools to combat transmission bottlenecks and reduced inertia. IEEE Power and Energy Magaz 13(1):60–74

    Article  Google Scholar 

  35. National Grid ESO (2019). Interim report into the low frequency demand disconnection (lfdd) following generator trips and frequency excursion on 9 aug 2019. In: Technical report

    Google Scholar 

  36. Joos G, Ooi B, McGillis D, Galiana F, Marceau R (2000) The potential of distributed generation to provide ancillary services. In: 2000 power engineering society summer meeting (cat. no. 00ch37134), vol 3, pp 1762–1767. IEEE

    Google Scholar 

  37. Rebours YG, Kirschen DS, Trotignon M, Rossignol S (2007) A survey of frequency and voltage control ancillary services-part ii: economic features. IEEE Trans Power Syst 22(1):358–366

    Article  Google Scholar 

  38. Wu T, Rothleder M, Alaywan Z, Papalexopoulos AD (2004) Pricing energy and ancillary services in integrated market systems by an optimal power flow. IEEE Trans Power Syst 19(1):339–347

    Article  Google Scholar 

  39. ANEEL (2018) Resolução normativa 822, de 26 de junho de 2018, que regulamenta a prestação e remuneração de serviços ancilares no sin. Technical report, National Agency of Electrical Energy - ANEEL (Brazil)

    Google Scholar 

  40. ANEEL (2019a) Revisão da resolução normativa 697/2015, que regulamenta a prestação e remuneração de serviços ancilares no sin, relatório de análise de impacto regulatório 006/2019. Technical report, National Agency of Electrical Energy - ANEEL (Brazil)

    Google Scholar 

  41. ANEEL (2019b) Technical arrangements for ancillary services - submodule 14.2. Technical report, National Agency of Electrical Energy - ANEEL (Brazil)

    Google Scholar 

  42. Pattabiraman D, Lasseter, RH, Jahns TM (2018) Comparison of grid following and grid forming control for a high inverter penetration power system. In: 2018 IEEE power energy society general meeting (PESGM), pp 1–5

    Google Scholar 

  43. Poolla BK, Groß D, Dörfler F (2019) Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans Power Syst 34(4):3035–3046

    Article  Google Scholar 

  44. Grid N (2014) Electricity ten year statement. UK Electricity Transmission, London

    Google Scholar 

  45. Breithaupt T, Tuinema B, Herwig D, Wang D, Hofmann L, Rueda Torres J, Mertens A, Rüberg S, Meyer R, Sewdien V et al (2016) Migrate deliverable d1. 1 report on systemic issues. MIGRATE Project Consortium: Bayreuth, Germany, p 137

    Google Scholar 

  46. Jessen L, Günter S, Fuchs FW, Gottschalk M, Hinrichs H-J (2015) Measurement results and performance analysis of the grid impedance in different low voltage grids for a wide frequency band to support grid integration of renewables. In: 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 1960–1967

    Google Scholar 

  47. Rodrigues Lima J (2017) Variable speed pumped storage plants multi-time scale control to allow its use to power system stability. PhD thesis, Paris Saclay

    Google Scholar 

  48. Joos G, Ooi BT, McGillis D, Galiana FD, Marceau R (2000) The potential of distributed generation to provide ancillary services. In: 2000 power engineering society summer meeting (Cat. No.00CH37134) 3:1762–1767

    Google Scholar 

  49. Markovic U, Stanojev O, Vrettos E, Aristidou P, Hug G (2019) Understanding stability of low-inertia systems

    Google Scholar 

  50. ENTSO-E, (2013) Documentation on controller tests in test grid configurations. Technical report, European Network of Transmission System Operators for Electricity

    Google Scholar 

  51. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control, vol 7. McGraw-hill New York

    Google Scholar 

  52. Eirgrid S (2012) Ds3: system services consultation–new products and contractual arrangements

    Google Scholar 

  53. Grid N (2016) Enhanced frequency response: invitation to tender for pre-qualified parties

    Google Scholar 

  54. ERCOT (2013) Future ancillary services in electric reliability council of texas (ercot)

    Google Scholar 

  55. ENTSO-E, (2017) High penetration of power electronic interfaced power sources (hpopeips). Technical report, Guidance document for national implementation for network codes on grid connection

    Google Scholar 

  56. Tamrakar U, Shrestha D, Maharjan M, Bhattarai BP, Hansen TM, Tonkoski R (2017) Virtual inertia: current trends and future directions. Appl Sci 7(7):654

    Article  Google Scholar 

  57. Beck H, Hesse R (2007) Virtual synchronous machine. In: 2007 9th international conference on electrical power quality and utilisation, pp 1–6

    Google Scholar 

  58. Zhong Q-C, Weiss G (2010) Synchronverters: Inverters that mimic synchronous generators. IEEE Trans Ind Electron 58(4):1259–1267

    Article  Google Scholar 

  59. Sakimoto, K., Miura, Y., and Ise, T. (2011). Stabilization of a power system with a distributed generator by a virtual synchronous generator function. In 8th International Conference on Power Electronics-ECCE Asia, pages 1498–1505. IEEE

    Google Scholar 

  60. D’Arco S, Suul JA, Fosso OB (2015) A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Elect Power Syst Res 122:180–197

    Article  Google Scholar 

  61. Van TV, Visscher K, Diaz J, Karapanos V, Woyte A, Albu M, Bozelie J, Loix T, Federenciuc D (2010) Virtual synchronous generator: an element of future grids. In: 2010 IEEE PES innovative smart grid technologies conference Europe (ISGT Europe). IEEE, pp 1–7

    Google Scholar 

  62. Shrestha D, Tamrakar U, Ni Z, Tonkoski R (2017) Experimental verification of virtual inertia in diesel generator based microgrids. In: 2017 IEEE international conference on industrial technology (ICIT). IEEE, pp 95–100

    Google Scholar 

  63. Torres M, Lopes LA (2013) Virtual synchronous generator: a control strategy to improve dynamic frequency control in autonomous power systems

    Google Scholar 

  64. Zhong Q-C (2016) Virtual synchronous machines: a unified interface for grid integration. IEEE Power Electron Magaz 3(4):18–27

    Article  Google Scholar 

  65. Bevrani H, Ise T, Miura Y (2014) Virtual synchronous generators: a survey and new perspectives. Int J Electr Power Energy Syst 54:244–254

    Article  Google Scholar 

  66. Zhong Q-C, Nguyen P-L, Ma Z, Sheng W (2013) Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans Power Electron 29(2):617–630

    Article  Google Scholar 

  67. Ma Z, Zhong Q-C, Yan JD (2012) Synchronverter-based control strategies for three-phase pwm rectifiers. In: 2012 7th IEEE conference on industrial electronics and applications (ICIEA). IEEE, pp 225–230

    Google Scholar 

  68. Torres M, Lopes LA (2009) Virtual synchronous generator control in autonomous wind-diesel power systems. In: 2009 IEEE electrical power and energy conference (EPEC). IEEE, pp 1–6

    Google Scholar 

  69. Van Wesenbeeck M, De Haan S, Varela P, Visscher K (2009) Grid tied converter with virtual kinetic storage. In: 2009 IEEE Bucharest PowerTech. IEEE, pp 1–7

    Google Scholar 

  70. Svensson J (2001) Synchronisation methods for grid-connected voltage source converters. IEE Proc-Generat Trans Distrib 148(3):229–235

    Article  Google Scholar 

  71. Midtsund T, Suul J, Undeland T (2010) Evaluation of current controller performance and stability for voltage source converters connected to a weak grid. In: The 2nd international symposium on power electronics for distributed generation systems. IEEE, pp 382–388

    Google Scholar 

  72. Chang C, Gorinevsky D, Lall S (2015) Stability analysis of distributed power generation with droop inverters. IEEE Trans Power Syst 30(6):3295–3303

    Article  Google Scholar 

  73. Dohler JS, de Almeida PM, de Oliveira JG et al (2018) Droop control for power sharing and voltage and frequency regulation in parallel distributed generations on ac microgrid. In: 2018 13th IEEE International Conference on Industry Applications (INDUSCON). IEEE, pp 1–6

    Google Scholar 

  74. Mohd A, Ortjohann E, Morton D, Omari O (2010) Review of control techniques for inverters parallel operation. Electric Power Syst Res 80(12):1477–1487

    Article  Google Scholar 

  75. Arani MFM, Mohamed YA-RI, El-Saadany EF (2014) Analysis and mitigation of the impacts of asymmetrical virtual inertia. IEEE Trans Power Syst 29(6):2862–2874

    Article  Google Scholar 

  76. Soni N, Doolla S, Chandorkar MC (2013) Improvement of transient response in microgrids using virtual inertia. IEEE Trans Power Deliv 28(3):1830–1838

    Article  Google Scholar 

  77. D’Arco S, Suul JA (2013) Virtual synchronous machines-classification of implementations and analysis of equivalence to droop controllers for microgrids. In: 2013 IEEE grenoble conference. IEEE, pp 1–7

    Google Scholar 

  78. D’Arco S, Suul JA, Fosso OB (2015) Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation. Int J Electr Power Energy Syst 72:3–15

    Article  Google Scholar 

  79. Gonzalez-Torres JC, Costan V, Damm G, Benchaib A, Bertinato A, Poullain S, Luscan B, Lamnabhi-Lagarrigue F (2018) Hvdc protection criteria for transient stability of ac systems with embedded hvdc links. J Eng 15:956–960

    Article  Google Scholar 

  80. Machowski J, Bialek J, Bumby J (2011) Power system dynamics: stability and control. Wiley

    Google Scholar 

  81. Bretas NG, Alberto LF (2003) Lyapunov function for power systems with transfer conductances: extension of the invariance principle. IEEE Trans Power Syst 18(2):769–777

    Article  Google Scholar 

  82. Lee D (2016) Ieee recommended practice for excitation system models for power system stability studies. IEEE Std 421(5–2016):1–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, F., Damm, G., Ribeiro, P. (2022). DC Microgrids for Ancillary Services Provision. In: Zambroni de Souza, A.C., Venkatesh, B. (eds) Planning and Operation of Active Distribution Networks. Lecture Notes in Electrical Engineering, vol 826. Springer, Cham. https://doi.org/10.1007/978-3-030-90812-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90812-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90811-9

  • Online ISBN: 978-3-030-90812-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics