Skip to main content

Accuracy: Deterministic and Random Errors

  • Chapter
  • First Online:
Analog-to-Digital Conversion
  • 3472 Accesses

Abstract

Technology is the foundation on which every circuit is built. Over the last four decades, technology developments were dominated by the rapid evolution of CMOS technology. This chapter examines a few aspects of that advancement that are relevant to the analog-to-digital designer.

A major worry in design is the variation of parameter values. With the improved control over processing, the batch-to-batch variation is largely under control. The remaining variation between otherwise identical components is generally described by “mis-match” parameters. Next to these random phenomena also systematic errors called “offsets” play an increasingly important role. In conventional ICs, analog circuits with a differential operation (e.g. analog-to-digital converters) were already affected by this random parameter spread. Now statistical phenomena influence the choice for architectures. Understanding and mitigating these effects requires statistical means and models.

The modeling of systematic and random effects that originate from physical, electrical, thermal and lithography effects in devices causing intra-die variations is extensively described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author gratefully acknowledges the many contributions and discussions with his colleagues Hans Tuinhout, Nicole Wils, and Maarten Vertregt in Philips/NXP Research to this chapter.

  2. 2.

    It is always better to rely on simple and oversee-able structures than on the ability to extract precisely the parasitics.

  3. 3.

    Choosing a symmetrical definition removes unnecessary terms from the equations. Obviously any other choice will result in equivalent results, after some more paper work.

  4. 4.

    A rough estimate for a technological gradient can be approximated by dividing the difference between the maximum and minimum of the parameter by half of the wafer diameter.

  5. 5.

    Substrate noise is propagated via the substrate resistance and attenuated by local substrate connections in the analog circuit. A high ratio between both works well.

  6. 6.

    The place to check out lithographical developments is the SPIE conference: www.spie.org. Publications are available on the SPIE digital library website.

  7. 7.

    The processing cost is the determining factor.

  8. 8.

    Compare thermal noise: a flat spectrum in the frequency domain and a Gaussian amplitude distribution.

  9. 9.

    For ease of understanding only, a uniformly distributed dopant is assumed, and more complicated distributions must be numerically evaluated.

  10. 10.

    Here the root of the variance σ is meant. This is the parameter describing the mathematical statistical model. For measurements the term standard deviation is often abbreviated to s.d. and labeled “s.”

  11. 11.

    Measurements generate a standard deviation, while the underlying physics model is described by σ. In the following often σ will be used also when a standard deviation is meant.

  12. 12.

    An often proposed “happy-hour” mismatch model explains threshold fluctuation as a form of petrified 1∕f noise. Threshold mismatch is determined by the number of charged ions and even for the smallest size transistors there are still on average > 100 ions. The same transistor shows none or just one or two electron trapping centers. The numbers do not fit. The trapping centers also follow a Poisson distribution, and the effective v1∕ f,rms follows an area scaling law.

  13. 13.

    Your author had to rebuild in the early 1980s his matching test setup three times before it produced reliable data.

  14. 14.

    The contribution of mobility reduction factor θ and source and drain series resistance are next in line.

  15. 15.

    Accuracy means that the standard deviation of a circuit parameter is within 5–10% of the prediction, see Sect. 6.5.9.

  16. 16.

    In the previous century lithographical emitter deviations were dominant.

  17. 17.

    This effect was used to calibrate the offset in opamps.

  18. 18.

    Random skew is a random but time-invariant effect, while jitter is a random time-variant mechanism.

References

  1. R.W. Gregor, On the relationship between topography and transistor matching in an analog CMOS technology. IEEE Trans. Electron Devices 39, 275–282 (1992)

    Article  Google Scholar 

  2. J.H. Stathis, S. Zafar, The negative bias temperature instability in MOS devices: a review. Microelectron. Reliab. 46, 270–286 (2006)

    Article  Google Scholar 

  3. Q, Lim et al., Comparison of MIM capacitors and metal finger capacitors for analog and RF applications, in Proceedings of the 2004 RF and Microwave Conference (2004), pp. 85–89

    Google Scholar 

  4. C. Diaz, D.D. Tang, Y.-C Sun, CMOS technology for MS/RF SoC. IEEE Trans. Electron Devices 50, 557–566 (2003)

    Google Scholar 

  5. C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits. 45, 731–740 (2010)

    Article  Google Scholar 

  6. V. Tripathi, B. Murmann, Mismatch characterization of small metal fringe capacitors. IEEE Trans. Circuits Syst. I 61, 2236–2242 (2014)

    Article  Google Scholar 

  7. https://www.itrs2.net and irds.ieee.org

  8. H.P. Tuinhout, G. Hoogzaad, M. Vertregt, R. Roovers, C. Erdmann, Design and characterization of a high precision resistor ladder test structure, in IEEE International Conference on Microelectronic Test Structures (2002), pp. 223–228

    Google Scholar 

  9. T.B. Hook, J. Brown, P. Cottrell, E. Adler, D. Hoyniak, J. Johnson, R. Mann, Lateral ion implant straggle and mask proximity effect. IEEE Trans. Electron Devices 50, 1946–1951 (2003)

    Article  Google Scholar 

  10. P. Drennan, M. Kniffin, D. Locascio, Implications of proximity effects for analog design, in IEEE Custom Integrated Circuits Conference (2006), pp. 169–176

    Google Scholar 

  11. A. Madan et al., The enhanced role of shallow-trench isolation in ionizing radiation damage of 65 nm RF-CMOS on SOI. IEEE Trans. Nucl. Sci. 56, 3256–3261 (2009)

    Article  Google Scholar 

  12. H.P. Tuinhout, A. Damian, A. Zegers-van Duijnhoven, Characterization of parametric mismatch attributable to plastic chip encapsulation, in Proceedings 2020 IEEE Conference on Microelectronic Test Structures, 2–3 (2020)

    Google Scholar 

  13. R.A. Bianchi, G. Bouche, O. Roux-dit-Buisson, Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical performance, in Technical Digest International Electron Devices Meeting (2002), pp. 117–120

    Google Scholar 

  14. N. Wils, H.P. Tuinhout, M. Meijer, Characterization of STI edge effects on CMOS variability. IEEE Trans. Semicond. Manuf. 22, 59–65 (2009)

    Article  Google Scholar 

  15. L. Ge, V. Adams, K. Loiko, D. Tekleab, X.-Z. Bo, M. Foisy, V. Kolagunta, S. Veeraraghavan, Modeling and simulation of poly-space effects in uniaxially-strained etch stop layer stressors, in IEEE International SOI Conference (2007), pp. 25–26

    Google Scholar 

  16. H.P. Tuinhout, A. Bretveld, W.C.M. Peters, Measuring the span of stress asymmetries on high-precision matched devices, in International Conference on Microelectronic Test Structures (2004), pp. 117–122

    Google Scholar 

  17. H.P. Tuinhout, M. Vertregt, Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures. IEEE Trans. Semicond. Manuf. 14, 302–310 (2001)

    Article  Google Scholar 

  18. H.P. Tuinhout, M.J.M. Pelgrom, R. Penning de Vries, M. Vertregt, Effects of metal coverage on MOSFET matching, in Technical Digest International Electron Devices Meeting (1996), pp. 735–739

    Google Scholar 

  19. G. Gildenblat (ed.), Compact Modeling: Principles, Techniques and Applications (Springer, Berlin, 2010). ISBN 978-90-481-8613-6

    Google Scholar 

  20. M.-F. Lam, A. Tammineedi, R. Geiger, Current mirror layout strategies for enhancing matching performance. Analog Integr. Circuits Signal Process. 28, 9–26 (2001)

    Article  Google Scholar 

  21. H.P. Tuinhout, Improving BiCMOS technologies using BJT parametric mismatch characterisation, in Bipolar/BiCMOS Circuits and Technology Meeting (2003), pp. 163–170

    Google Scholar 

  22. H.P. Tuinhout, A. Zegers-van Duijnhoven, I. Brunets, A test structure to reveal short-range correlation effects of mismatch fluctuations in backend metal fringe capacitors, in Proceedings 2018 IEEE Conference on Microelectronic Test Structures (2018), pp. 87–92

    Google Scholar 

  23. Y.C. Chae, K. Souri, K.A.A. Makinwa, A 6.3 μW 20bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid-State Circuits 48, 3019–3027 (2013)

    Google Scholar 

  24. V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Markus, J. Silva, G.C. Temes, A low-power 22-bit incremental ADC. IEEE J. Solid-State Circuits 41(7), 1562–1571 (2006)

    Article  Google Scholar 

  25. M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, A designers view on mismatch, chapter 13, in Nyquist AD Converters, Sensor Interfaces, and Robustness, Advances on Analog Circuit Design 2012, ed. by A.H.M.V. Roermund, M. Steyaert, A. Baschirotto (Springer, Berlin, 2012)

    Google Scholar 

  26. W. Shockley, Problems related to p-n junctions in silicon. Solid-State Electron. 2, 35–67 (1961)

    Article  Google Scholar 

  27. J.L. McCreary, Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J. Solid-State Circuits 16, 608–616 (1981)

    Article  Google Scholar 

  28. J.-B. Shyu, G.C. Temes, K. Yao, Random errors in MOS capacitors. IEEE J. Solid-State Circuits 17, 1070–1076 (1982)

    Article  Google Scholar 

  29. R. Aparicio, Capacity limits and matching properties of integrated capacitors. IEEE J. Solid-State Circuits 27, 384–393 (2002)

    Article  Google Scholar 

  30. H.P. Tuinhout, H. Elzinga, J.T. Brugman, F. Postma, Accurate capacitor matching measurements using floating-gate test structures, in IEEE International Conference on Microelectronic Test Structures (1994), pp. 133–137

    Google Scholar 

  31. H.P. Tuinhout, F. van Rossem, N. Wils, High-precision on-wafer backend capacitor mismatch measurements using a benchtop semiconductor characterization system, in IEEE International Conference on Microelectronic Test Structures (2009), pp. 3–8

    Google Scholar 

  32. P.G. Drennan, Diffused resistor mismatch modeling and characterization, in Bipolar/BiCMOS Circuits and Technology Meeting (1999), pp. 27–30

    Google Scholar 

  33. K.R. Lakshmikumar, R.A. Hadaway, M.A. Copeland, Characterization and modeling of mismatch in MOS transistors for precision analog design. IEEE J. Solid-State Circuits 21, 1057–1066 (1986)

    Article  Google Scholar 

  34. C. Michael, M. Ismail, Statistical modeling of device mismatch for analog MOS integrated circuits. IEEE J. Solid-State Circuits 27, 154–166 (1992)

    Article  Google Scholar 

  35. T. Mizuno, J. Okamura, A. Toriumi, Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs. IEEE Trans. Electron Devices 41, 2216–2221 (1994)

    Article  Google Scholar 

  36. F. Forti, M.E. Wright, Measurement of MOS current mismatch in the weak inversion region. IEEE J. Solid-State Circuits 29, 138–142 (1994)

    Article  Google Scholar 

  37. J.A. Croon, W. Sansen, H.E. Maes, Matching Properties of Deep Sub-micron MOS Transistors (Springer, Dordrecht, 2005). ISBN: 0-387-24314-3

    Google Scholar 

  38. K. Kuhn, et al., Process technology variation. IEEE Trans. Electron Devices 58, 2197–2208 (2011)

    Article  Google Scholar 

  39. M. Dahlstrom et al., Influence of the Ge profile on VBE and current gain mismatch in advanced SiGe BICMOS NPN HBT with 200GHz ft, in BCTM (2006)

    Google Scholar 

  40. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits 24, 1433–1440 (1989)

    Article  Google Scholar 

  41. A.R. Brown, G. Roy, A. Asenov, Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54, 3056–3063 (2007)

    Article  Google Scholar 

  42. J. Bastos, M. Steyaert, R. Roovers, P. Kinget, W. Sansen, B. Graindourze, A. Pergoot, E. Janssens, Mismatch characterization of small size MOS transistors, in IEEE International Conference on Microelectronic Test Structures (1995), pp. 271–276

    Google Scholar 

  43. P.A. Stolk, F.P. Widdershoven, D.B.M. Klaassen, Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans. Electron Devices 45, 1960–1971 (1998)

    Article  Google Scholar 

  44. P. Andricciola, H.P. Tuinhout, The temperature dependence of mismatch in deep-submicrometer bulk MOSFETs. IEEE Electron Device Lett. 30, 690–692 (2009)

    Article  Google Scholar 

  45. P.A. ’t Hart, M. Babaie, E. Charbon, A. Vladimirescu, F. Sebastiano, Characterization and modeling of mismatch in cryo-CMOS. IEEE J. Electron Devices Soc. 8, 263–273 (2020)

    Google Scholar 

  46. T.B. Hook, J.B. Johnson, A. Cathignol, A. Cros, G. Ghibaudo, Comment on (channel length and threshold voltage dependence of a transistor mismatch in a 32-nm HKMG technology). IEEE Trans. Electron Devices 58, 1255–1256 (2011)

    Article  Google Scholar 

  47. H.F. Dadgour, K. Endo, V.K. De, K. Banerjee, Grain-orientation induced work function variation in nanoscale metal-gate transistors—part I: modeling, analysis, and experimental validation. IEEE Trans. Electron Devices 57, 2504–2514 (2010)

    Article  Google Scholar 

  48. H.P. Tuinhout, Electrical Characterisation of Matched Pairs for Evaluation of Integrated Circuit Technologies, Ph.D. Thesis Delft University of Technology (2005). http://repository.tudelft.nl/file/82893/025295

  49. J.A. Croon, H.P. Tuinhout, R. Difrenza, J. Knol, A.J. Moonen, S. Decoutere, H.E. Maes, W. Sansen, A comparison of extraction techniques for threshold voltage mismatch, in IEEE International Conference on Microelectronic Test Structures (2002), pp. 235–240

    Google Scholar 

  50. H.P. Tuinhout, N. Wils, A cross-coupled common centroid test structures layout method for high precision MIM capacitor mismatch measurements, in Proceedings 2014 IEEE Conference on Microelectronic Test Structures (2014), pp. 243–248

    Google Scholar 

  51. P. Magnone, F. Crupi, A. Mercha, P. Andricciola, H. Tuinhout, R.J.P. Lander, FinFET mismatch in subthreshold region: theory and experiments. IEEE Trans. Electron Devices 57, 2848–2855 (2010)

    Article  Google Scholar 

  52. Q. Zhang, C. Wang, H. Wang, Ch. Schnabel, D.-G. Park, S. K. Springer, E. Leobandung, Experimental study of gate-first FinFET threshold-voltage mismatch. IEEE Trans. Electron Devices 61, 643–646 (2014)

    Article  Google Scholar 

  53. M.D. Giles et al., High sigma measurement of random threshold voltage variation in 14 nm Logic FinFET technology, in Symposium on VLSI Technology Digest of Technical Papers, 11–2 (2015)

    Google Scholar 

  54. T. Karatsori et al., Statistical characterization and modeling of drain current local and global variability in 14 nm bulk FinFETs, in Proceedings 2017 IEEE Conference on Microelectronic Test Structures, 3.1 (2017)

    Google Scholar 

  55. G. Angelov et al., Study of process variability sensitive local device parameters for 14-nm bulk FinFETs, in International Spring Seminar on Electronics Technology (2020)

    Google Scholar 

  56. T. Matsukawa, et al., Decomposition of on-current variability of nMOS FinFETs for prediction beyond 20 nm. IEEE Trans. Electron Devices 59, 2003–2010 (2012)

    Article  Google Scholar 

  57. M.S. Bhoir et al., Analog performance and its variability in sub-10 nm fin-width FinFETs: a detailed analysis. J. Electron Devices Soc. 7, 1217–1224 (2019)

    Article  Google Scholar 

  58. A. Sudarsanan, S. Venkateswarlu, K. Nayak, Impact of fin line edge roughness and metal gate granularity on variability of 10-nm node SOI n-FinFET. IEEE Trans. Electron Devices 66, 4646–4652 (2019)

    Article  Google Scholar 

  59. T. Serrano-Gotarredona, B. Linares-Barranco, CMOS transistor mismatch model valid from weak to strong inversion, in 29th European Solid-State Circuits Conference (2003), pp. 627–630

    Google Scholar 

  60. P.G. Drennan, C.C. McAndrew, Understanding MOSFET mismatch for analog design. IEEE J. Solid-State Circuits 38, 450–456 (2003)

    Article  Google Scholar 

  61. K. Takeuchi, M. Hane, Statistical compact model parameter extraction by direct fitting to variations. IEEE Trans. Electron Devices 55, 1487–1493 (2008)

    Article  Google Scholar 

  62. B. Cheng, S. Roy, A. Asenov, Statistical compact model parameter extraction strategy for intrinsic parameter fluctuation, in Simulation on Semiconductor Processes and Devices, ed. by T. Grasser, S. Selberherr (Springer, Wien, New York, 2007), pp. 301–304

    Google Scholar 

  63. M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, Transistor matching in analog CMOS applications, in International Electron Devices Meeting (1998), pp. 915–918

    Google Scholar 

  64. T.S. Doorn, E.J.W. ter Maten, J.A. Croon, A. Di Bucchianico, O. Wittich, Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield, in 34th European Solid-State Circuits Conference (2008), pp. 230–233

    Google Scholar 

  65. M. Vertregt, P.C.S. Scholtens, Assessment of the merits of CMOS technology scaling for analog circuit design, in 30th European Solid-State Circuits Conference (2004), pp. 57–64

    Google Scholar 

  66. M.J.M. Pelgrom, Low-power high-speed A/D conversion, in 20th European Solid-State Circuits Conference, Low-power workshop (1994)

    Google Scholar 

  67. P. Kinget, M. Steyaert, Impact of transistor mismatch on the speed accuracy power trade-off, in Custom Integrated Circuits Conference (1996), pp. 333–336

    Google Scholar 

  68. K.-W.I. Su, et al., A scaleable model for STI mechanical stress effect on layout dependence of MOS electrical characteristics, in Proceedings of the IEEE Custom Integrated Circuits Conference (2003), pp. 245–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelgrom, M.J.M. (2022). Accuracy: Deterministic and Random Errors. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-030-90808-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90808-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90807-2

  • Online ISBN: 978-3-030-90808-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics