Skip to main content

Time-Interleaving

  • Chapter
  • First Online:
  • 3451 Accesses

Abstract

Time-interleaving allows to push the speed of the conversion to almost flash converter like performance, while achieving a much better resolution. The signal is demultiplexed and processed by a number of slower channels. The data streams are recombined in the digital domain. The problems associated with time-interleaving are the various errors that can result from inequalities between the multiple paths: offsets, gain mismatches, sampling time differences, bandwidth variations, and for digital-to-analog conversion also reconstruction errors. Examples with varying numbers of interleaving channels are studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The depicted bandwidth in the plot is less than fs∕8 in order to avoid a messy picture, but this does not limit the overall validity of the argument.

  2. 2.

    This is the generalized Miller effect: The effective impedance is the capacitor value times (1 − A) where A is negative for the Miller effect in a class-A stage and about +0.9 in a source follower.

  3. 3.

    The author gratefully acknowledges the remarks and the discussions on this section with Thanos Ramkaj.

  4. 4.

    PVT: process, voltage, and temperature deviations from nominal process specification.

  5. 5.

    Remember that in many analog calculations the power is represented by rms voltage-squared, omitting the formally required resistance.

  6. 6.

    These are orders of magnitude, precise values depend on viewing conditions.

References

  1. W.C. Black, D.A. Hodges, Time-interleaved converter arrays. IEEE J. Solid State Circuits 15(12), 1022–1029 (1980)

    Article  Google Scholar 

  2. M.J.M Pelgrom, A. Jochijms, H. Heijns, A CCD delay line for video applications. IEEE Trans. Consum. Electron. 33, 603–609 (1987)

    Google Scholar 

  3. S. Limotyrakis, S.D. Kulchycki, D.K. Su, B.A. Wooley, A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC. IEEE J. Solid State Circuits 40, 1057–1067 (2005)

    Article  Google Scholar 

  4. R. Kapusta et al., A 14-b 80 MS/s SAR ADC With 73.6 dB SNDR in 65 nm CMOS. IEEE J. Solid State Circuits 48, 3059–3066 (2013)

    Google Scholar 

  5. M. El-Chammas, B. Murmann, A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE J. Solid State Circuits 46(4), 838–847 (2011)

    Article  Google Scholar 

  6. K. Doris, E. Janssen, C. Nani, A. Zanikopoulos, G. vd. Wiede, A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE J. Solid State Circuits 46, 2821–2833 (2011)

    Google Scholar 

  7. L. Kull et al., A 90-GS/s 8-b 667 mW 64x interleaved SAR ADC in 32 nm digital SOI CMOS, in International Solid-State Circuits Conference, Digest of Technical Papers (2014), pp. 378–79

    Google Scholar 

  8. L. Kull, J. Pliva, T. Toifl, M. Schmatz, P.A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. Meyer Andersen, Y. Leblebici, Implementation of low-power 6–8 b 30–90 GS/s time-interleaved ADCs with optimized input bandwidth in 32 nm CMOS. IEEE J. Solid State Circuits 51, 636–648 (2016)

    Article  Google Scholar 

  9. R.K. Poorfard, L.B. Lim, D.A. Johns, Time-interleaved oversampling A/D converters: theory and practice. IEEE Trans. Circuits Syst. II 44, 634–645 (1997)

    Google Scholar 

  10. M. Kozak, I. Kale, Novel topologies for time-interleaved delta- sigma modulators. IEEE Trans. Circuits Syst. II 47, 639–654 (2000)

    Google Scholar 

  11. C.-C. Hsu, F.-C. Huang, C.-Y. Shih, C.-C. Huang, Y.-H. Lin, C.-C. Lee, B. Razavi, An 11b 800MS/s time-interleaved ADC with digital background calibration, in International Solid-State Circuits Conference, Digest of Technical Papers (2007), pp. 164–165

    Google Scholar 

  12. B. Razavi, Design considerations for interleaved ADCs. IEEE J. Solid State Circuits 48(8), 1806–1817 (2013)

    Article  Google Scholar 

  13. E. Janssen et al., An 11b 3.6GS/s time-interleaved SAR ADC in 65nm CMOS, in International Solid-State Circuits Conference, Digest of Technical Papers (2013), pp. 464–65

    Google Scholar 

  14. M. Straayer et al., A 4GS/s time-interleaved RF ADC in 65 nm CMOS with 4GHz input bandwidth, in International Solid-State Circuits Conference, Digest of Technical Papers (2016), pp. 464–65

    Google Scholar 

  15. S.M. Louwsma et al., A 1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13μm CMOS. IEEE J Solid State Circuits 43, 778–786 (2008)

    Google Scholar 

  16. J. Ramirez-Angulo, R.G. Carvajal, A. Torralba, J. Galan, A.P. VegaLeal, J. Tombs, The Flipped Voltage Follower: a useful cell for low-voltage low power circuit design, in Proceedings ISCAS 2002, vol. 3 (2002), pp. 615–618

    Google Scholar 

  17. M.J. Kramer, E. Janssen, K. Doris, B. Murmann, A 14 b 35 MS/s SAR ADC achieving 75 dB SNDR and 99 dB SFDR with loop-embedded input buffer in 40 nm CMOS. IEEE J Solid State Circuits 50, 2891–2900 (2015)

    Article  Google Scholar 

  18. S. Bardsley, C. Dillon, R. Kummaraguntla, C. Lane, A.M.A. Ali, B. Rigsbee, D. Combs, A 100-dB SFDR 80-MSPS 14-Bit 0.35-μm BiCMOS pipeline ADC. IEEE J. Solid State Circuits 41, 2144–2153 (2006)

    Google Scholar 

  19. S. Le Tual, P.N. Singh, C. Curis, P. Dautriche, A 20-GHz BW 6-b 10-GS/s 32 mW time-interleaved SAR ADC with master T&H in 28 nm UTBB FDSOI technology, in International Solid-State Circuits Conference, Digest of Technical Papers (2014), pp. 382–383

    Google Scholar 

  20. Devarajan et al., A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE J. Solid State Circuits 52, 3204–3215 (2017)

    Google Scholar 

  21. A. Ramkaj et al., A 5-GS/s 158.6-mW 9.4-ENOB passive-sampling time-interleaved three-stage pipelined-SAR ADC with analog-digital corrections in 28-nm CMOS. IEEE J. Solid State Circuits 55, 1553–1564 (2020)

    Google Scholar 

  22. B. Setterberg et al., A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction, in International Solid-State Circuits Conference, Digest of Technical Papers (2013), pp. 466–467

    Google Scholar 

  23. A. Varzaghani et al., A 10.3-GS/s, 6-Bit flash ADC for 10G ethernet applications. IEEE J. Solid State Circuits 48(8), 3038–3048 (2013)

    Google Scholar 

  24. M.F. Snoeij, A.J.P. Theuwissen, K.A.A. Makinwa, J.H. Huijsing, Multiple-ramp column-parallel ADC architectures for CMOS image sensors. IEEE J. Solid State Circuits 42, 2986–2977 (2007)

    Article  Google Scholar 

  25. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, K. Kobayashi, Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 48, 261–271 (2001)

    Article  Google Scholar 

  26. n.d. Dalt, M. Harteneck, C. Sandner, A. Wiesbauer, On the jit- ter requirements of the sampling clock for analog-to-digital converters. IEEE Trans. Circuits Syst. I 49, 1354–1360 (2002)

    Google Scholar 

  27. E. Olieman, A-J. Annema, B. Nauta, An interleaved full nyquist high-speed DAC technique. IEEE J. Solid State Circuits 50, 704–715 (2015)

    Article  Google Scholar 

  28. E. Olieman, Time-interleaved high-speed D/A converters, Ph.D. thesis. University Twente (2016)

    Google Scholar 

  29. B. Verbruggen, M. Iriguchi, J. Craninckx, A 1.7mW 11b 250MS/s 2-times interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS, in International Solid-State Circuits Conference, Digest of Technical Papers (2012), pp. 466–467

    Google Scholar 

  30. J. Wu et al., A 5.4GS/s 12b 500mW pipeline ADC in 28nm CMOS, in Symposium on VLSI Circuits Digest of Technical Papers (2013), pp. C92–C93

    Google Scholar 

  31. F. van der Goes, C.M. Ward, S. Astgimath, H. Yan, J. Riley, Z. Zeng, J. Mulder, S. Wang, K. Bult, A 1.5 mW 68 dB SNDR 80 MS/s 2 interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J. Solid State Circuits 49, 2835–2845 (2014)

    Google Scholar 

  32. M. Brandolini et al., A 5 GS/s 150 mW 10 b SHA-Llss pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J. Solid State Circuits 50, 2922–2934 (2015)

    Article  Google Scholar 

  33. E. Martens, B. Hershberg, J. Craninckx, A 16-nm 69-dB SNDR 300-MSps ADC with capacitive reference stabilization, in Proceedings Symposium on VLSI Circuits (2017), C8-1

    Google Scholar 

  34. W. Liu, Y. Chang, S.-K. Hsien et al., A 600mW 30mW 0.13μm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization, in International Solid-State Circuits Conference, Digest of Technical Papers (2009), pp. 82–83

    Google Scholar 

  35. D. Stepanovic, B. Nikolic, A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid State Circuits 48, 971–982 (2013)

    Google Scholar 

  36. B. Vaz et al., A 13b 4 GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC, in International Solid-State Circuits Conference, Digest of Technical Papers (2017), pp. 276–277

    Google Scholar 

  37. B. Hershberg, D. Dermit, B. van Liempd, E. Martens, N. Markulic, J. Craninckx, A 4-GS/s 10-ENOB 75-mW ringamp ADC in 16-nm CMOS with background monitoring of distortion. IEEE J. Solid State Circuits 56 (2021). Early access

    Google Scholar 

  38. K. Sun, G. Wang, P. Gui, Q. Zhang, S, Elahmadi, A 31.5-GHz BW 6.4-b ENOB 56-GS/s ADC in 28 nm CMOS for 224-Gb/s DP-16QAM coherent recievers. in Proceedings of the IEEE Custom Integrated Circuit Conference (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelgrom, M.J.M. (2022). Time-Interleaving. In: Analog-to-Digital Conversion. Springer, Cham. https://doi.org/10.1007/978-3-030-90808-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90808-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90807-2

  • Online ISBN: 978-3-030-90808-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics