Skip to main content

Changing Energy in Economies

  • 106 Accesses

Abstract

The question of what economic mechanisms have driven changes in energy consumption during the last two centuries is addressed using statistical data. It is argued that a larger population, due to higher income, triggered a higher consumption of energy and fossil fuels. As the growth of agriculture and industries during the 1900s declined while services grew, the growth of that consumption was also saturated and specialisation in energy services emerged. Given those changes in the economic structure, the changes in energy consumption are explained with reference to the neo-classical train of thought about prices of scarce energy resources, the evolutionary viewpoint focused on progress in energy efficiency of technologies, and the behavioural one about value addition by energy services.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90804-1_3
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-90804-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

Literature

  • Ahrens, W. A., & Sharma, V. R. (1997). Trends in natural resource commodity prices: Deterministic or stochastic? Journal of Environmental Economics and Management, 33, 59–74.

    MATH  Google Scholar 

  • Allen, R. (2012). Backward into the future, The shift to coal and implications for the next energy transition. Energy Policy, 50, 17–23.

    Google Scholar 

  • Arora, V. (2014). Estimates of the price elasticity of the natural gas supply in the United States. https://mpra.ub.uni-muenchen.de/54232/. Accessed 12 June 2017.

  • Ayres, R., & Voudouris, V. (2014). The economic growth enigma: Capital, labour and useful energy? Energy Policy, 64, 16–28.

    Google Scholar 

  • Beaudreau, B. C., & Lightfoot, H. D. (2015). The physical limits to economic growth by R&D funded innovation. Energy, 84, 45–52.

    Google Scholar 

  • Brito, M., & Sousa, T. (2015). World primary energy production & consumption 1900–2010: What can be learned from past trends. In 12th international conference on energy for a clean environment, July 5–9, 2015, Lisboa, Portugal.

    Google Scholar 

  • Bunger, J. W. (2011). Oil share and tar sand. In D. S. Ginley & D. Cohen (Eds.), Fundamentals for energy materials and environmental sustainability. Materials Research Society.

    Google Scholar 

  • Cheng, V. K. M., & Hammond, G. P. (2017). Life-cycle energy densities and land-take requirements of various power generators: A UK perspective. Journal of the Energy Institute, 90(2017), 201–213.

    Google Scholar 

  • Clark, G., & Jacks, D. (2007). Coal and the industrial revolution, 1700–1869. European Review of Economic History, 11(1), 39–72.

    Google Scholar 

  • Doyne, F. J., & Lafond, F. (2016). How predictable is technological progress? Research Policy, 45, 647–665.

    Google Scholar 

  • EEA. (2011). Efficiency of conventional thermal electricity and heat production. European Environmental Agency, EN 19.

    Google Scholar 

  • Encyclopedia.com. (2020). Tax law and alcohol. https://www.encyclopedia.com/education/encyclopedias-almanacs-transcripts-and-maps/tax-laws-and-alcohol#:~:text=HISTORY,throughout%20much%20of%20U.S.%20history.&text=The%20states%20also%20impose%20special,state%20and%20local%20sales%20taxes. Accessed 22 June 2020.

  • Eriksson, O. (2017). Nuclear power and resource efficiency—A proposal for a revised primary energy factor. Sustainability, 9, 1063. https://doi.org/10.3390/su9061063

    CrossRef  Google Scholar 

  • Etemad, B., & Luciani, J. (1991). World energy production 1800–1985. DROZ.

    Google Scholar 

  • Fattouh, B., Poudineh, R., & West, R. (2019). The rise of renewables and energy transition: What adaptation strategy exists for oil companies and oil-exporting countries? Energy Transitions, 3, 45–58.

    Google Scholar 

  • Fouquet, R. (2011). Divergences in long run trends in the prices of energy and energy services. Review of Environmental Economics and Policy, 5(2), 196–218.

    Google Scholar 

  • Fouquet, R. (2016). Historical energy transitions: Speed, prices and system transformation. Energy Research & Social Science, 22, 7–12. ISSN 2214-6296.

    Google Scholar 

  • Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus South: Energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.

    Google Scholar 

  • Ghosh, T. K., & Prelas, M. A. (2009). Energy Resources and Systems, Volume 1: Fundamentals of non-renewable energy (pp. 649–676). Springer.

    Google Scholar 

  • Gillingham, K., & Stock, J. H. (2018). The cost of reducing greenhouse gas emissions. Journal of Economic Perspectives, 32(4), 53–72.

    Google Scholar 

  • Goldenberg, J., & Reddy, A. K. N. (1990). Energy for the developing world. Scientific American, 263, 111–118.

    Google Scholar 

  • Gordon, R. J. (1990). The measurement of durable goods prices. University of Chicago Press.

    Google Scholar 

  • Grübler, A. (2012). Energy transitions research: Insights and cautionary tales. Energy Policy, 50, 8–16.

    Google Scholar 

  • Grübler, A., & Nakicenovic, N. (1996). Decarbonizing the global energy system. Technological Forecasting and Social Change, 53(1), 97–110.

    Google Scholar 

  • Gupta, A. K., & Hall, C. A. S. (2011). A review of the past and current state of EROI data. Sustainability, 3, 1796–1809.

    Google Scholar 

  • Hall, C. A. S. (2017). Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist. Joule, 1(20), 635–638.

    Google Scholar 

  • Hall, C. A. S., Lambert, J. G., & Balogh, S. B. (2014). EROI of different fuels and the implications for society. Energy Policy, 64, 141–152.

    Google Scholar 

  • Herman, R., Ardekanin, A. A., & Ausubel, J. H. (1989). Dematerialization. In J. H. Ausubel & H. E. Sladovich (Eds.), Technology and environment (1st ed., pp. 50–69). National Academy Press.

    Google Scholar 

  • Hirth, L. (2013). The market value of variable renewable, the effect of solar wind power variability on their relative price. Energy Economics, 38, 218–236.

    Google Scholar 

  • Horses. (2021). There were 58 million horses and twenty times more cars by 2000s. https://www.google.com/search?q=number+of+horses+worldwide&oq=number+of+horses%2C+world&aqs=chrome.1.69i57j0l5.14907j0j8&sourceid=chrome&ie=UTF-8. Accessed 10 July 2021.

  • JRC. (2012). Analysis of energy saving potentials in energy generation. Joint Research Center.

    Google Scholar 

  • Kalimeris, P., Richardson, C., & Bithas, K. (2014). A meta-analysis investigation of the direction of the energy-GDP causal relationship: implications for the growth-degrowth dialogue. Journal of Cleaner Production, 67, 1–13.

    Google Scholar 

  • Kammertlander, A., & Schultze, G. G. (2020). Are democracies cleaner? European Journal of Political Economy, 64, 101920.

    Google Scholar 

  • Krozer, Y. (2008). Innovations and the environment. Springer.

    Google Scholar 

  • Krozer, Y., & Vis, J. C. (1998). How to get LCA in the right direction? Journal of Cleaner Production, 6(1), 53–61.

    Google Scholar 

  • Labandeira, X., Labeaga, J. M., & Lopez-Otero, X. (2015). A meta-analysis on the price elasticity of energy demand. University de Vigo, WP04/2015.

    Google Scholar 

  • Lander, D. S. (1998). The wealth and poverty of nations. W.W. Norton & Co.

    Google Scholar 

  • Layton, B. E. (2008). A comparison of energy densities of prevalent energy sources in units of joules per cubic meter. International Journal of Green Energy, November.

    Google Scholar 

  • Malamina, P. (2016). Energy consumption in England and Italy, 1560–1913.Two pathways toward energy transition. Economic History Review, 69(1), 78–103.

    Google Scholar 

  • Malanima, P. (2014). Energy in history. In N. Agnoletti & S. Neri Serneri (Eds.), The basic environmental history. Springer.

    Google Scholar 

  • McDonald, A., & Schrattenholzer, L. (2003). Learning curves and technology assessment. International Institute for Applied Systems Analysis.

    Google Scholar 

  • Melsted, O., & Palua, I. (2018). The historical transition from coal to hydrocarbons; previous explanations and the need for an integrative perspective. Canadian Journal of History, 53(3), 395–423.

    Google Scholar 

  • Milanovic, B. (2012). Global income inequality by the numbers: In history and now. The World Bank, report nr. 6259.

    Google Scholar 

  • Narodoslawski, M. (2019). Bioresources and technologies. In Y. Krozer & M. Narodoslawski (Eds.), Economics of bioresources. Springer.

    Google Scholar 

  • Nordhaus, W. D. (1994). Do real output and real wages measures capture realities? The history of lighting suggests not. Cowles Foundation.

    Google Scholar 

  • Nordhaus, W. D. (2010). The perils of learning model for modelling endogenous technical change. https://www.nap.edu/read/13023/chapter/15. Accessed 25 May 2020.

  • NREL. (2020). Cell-efficiency. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 20 Apr 2020.

  • Papaioannou, K. J., & Luiten van Zanten, J. (2015). The dictator effect: How long years in office affect economic development. Journal of Institutional Economics, 11(1), 111–139.

    Google Scholar 

  • Piketty, T. (2014). Capital in the twenty-first century (1st ed.). The Belknap Press the Harvard University Press.

    Google Scholar 

  • Pommeranz, K. (2000). The great divergence. Princetown University Press.

    Google Scholar 

  • Ramirez, C. A., & Worrell, E. (2006). Feeding fossil fuels to the soil. An analysis of energy embedded and technological learning in the fertilizer industry. Resources, Conservation and Recycling, 46, 75–93.

    Google Scholar 

  • Raugeri, M., & Leccisi, E. (2016). A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom. Energy Policy, 90, 46–59.

    Google Scholar 

  • Rosenberg, N. (1994). Energy efficient technologies. In A. Q. Curzio, M. Fortis, & R. Zoboli (Eds.), Innovation, resources and economic growth (pp. 63–82). Springer.

    Google Scholar 

  • Rosenberg, N., & Birdzell, L. E. (1986). How the west grew rich. I.B. Tauris & Co. Ltd, Publishers.

    Google Scholar 

  • Rosenberg, D., & Tarasenko, G. (2020). Innovation for despots? How dictators and democratic leaders differ in stifling innovation and misusing natural resources across 114 countries. Energy Research and Social Science, 68, 101543.

    Google Scholar 

  • Rubin, E. S., Azevedo, I. M. L., Jaramillo, P., & Yeh, S. (2015). A review of learning rates for electricity supply technologies. Energy Policy, 86, 198–218.

    Google Scholar 

  • Sachs, J. D., & Warner, A. M. (2001). Natural resources and economic development, the curse of natural resources. European Economic Review, 45, 827–838.

    Google Scholar 

  • Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished. Energy Policy, 37, 181–189.

    Google Scholar 

  • Shafiee, S., & Topal, E. (2010). A long term view on fossil fuel prices. Applied Energy, 87, 988–1000.

    Google Scholar 

  • Smil, V. (2000). Energy in the twentieth century: Resources, conversions, costs, uses, and consequences. Annual Review of Energy and the Environment, 25, 21–51.

    Google Scholar 

  • Smil, V. (2004). World history and energy (Encyclopedia of Energy, Vol. 6. r 2004). Elsevier.

    Google Scholar 

  • Spath, P. L., & Mann, M. K. (2001). Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory.

    Google Scholar 

  • Stobaugh, R. (1988). Innovation and competition (1st ed.). Harvard Business School Press.

    Google Scholar 

  • Taylor, B. (2017). The future of energy prices: Lessons from 750 years of history, January, 5, 2017, blog Global Financial Data. http://www.globalfinancialdata.com/the-future-of-energy-prices-lessons-from-750-years-of-history/. Accessed 14 Dec 2020.

  • Wallerstein, I. (1974). The modern world system I: Capitalist agriculture and the origins of the European world-economy in the sixteenth century. Academic.

    Google Scholar 

  • Warde, P. (2007). Energy consumption in England & wales, 1560–2000. Consiglio Nazionale delle Ricerche, Istituto di Studi sulle Società del Mediterraneo.

    Google Scholar 

  • Watanabe, C., Griffy-Brown, C., Zhu, B., & Nagamatsu, A. (2002). Inter–firm Technology Spillover and the “Virtous Cycle” of Photovoltaic development in Japan. In A. Grübler, N. Nakicenovic, & W. D. Nordhaus (Eds.), Technological change and the environment (Resources for the Future) (pp. 127–159).

    Google Scholar 

  • Wiersma, D. (1989). De Efficiëntie van een Marktconform Milieubeleid, een uitwerking van de SO2 emissiebestrijding van de Nederlandse Electriciteitssector, Rijksuniversiteit Groningen, dissertation.

    Google Scholar 

  • Yeh, S., & Rubin E.S. (2012). A review of uncertainties in technology experience curves. Energy Economics, 34, 762–771.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Krozer, Y. (2022). Changing Energy in Economies. In: Economics of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-90804-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90804-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90803-4

  • Online ISBN: 978-3-030-90804-1

  • eBook Packages: EnergyEnergy (R0)