Skip to main content

Energy Resources and Pollution

  • 119 Accesses

Abstract

Can energy resources meet the growing energy consumption of present and future generations without undermining environmental qualities? This question is addressed using authoritative assessments on renewable energy and fossil fuels, and statistical data on energy consumption, and CO2 emissions. While available resources of renewable energy enable a few thousand times larger than present annual energy consumption, well-exploitable resources of fossil fuels can be exhausted within several generations, with the exception of coal. The problem is that fossil fuels have complemented rather than substituted renewable energy in the past whilst modern renewable energy complements rather than substitutes fossil fuels at present. The growing fossil fuels also cause growing CO2 emissions. Although the growth saturates, far-reaching emission reduction is needed. Sufficient emission reduction can be attained if 4–5% annual growth of renewable energy over the next decades substitutes fossil fuels.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90804-1_2
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-90804-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

Literature

  • Bar-On, Y., Philips, R., & Milo, R. (2018). The biomass distribution on earth, 2018. PNAS, 115, 6506–6511.

    CrossRef  Google Scholar 

  • Beer, C., Reichstein, M., Tomelleri, R., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., … Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993), 834–838.

    CrossRef  Google Scholar 

  • Brahic C. (2007). Climate myths: Human CO2 emissions are too tiny to matter. New Scientist, 16-5-2007; https://www.newscientist.com/article/dn11638-climate-myths-human-co2-emissions-are-too-tiny-to-matter/. Accessed 31 July 2020.

  • Burrows, L. (2021). Deaths from fossil fuel emissions higher than previously thought. Harvard John Paulson School of Engineering and Applied Science. https://www.seas.harvard.edu/news/2021/02/deaths-fossil-fuel-emissions-higher-previously-thought. Accessed 13 Mar 2021.

  • Cipolla, C. M. (1993). Before the industrial revolution: European society and economy 1000 – 1700. W.W. Norton & Co.

    Google Scholar 

  • FAO. (2001). State of the world 2001. Climate change. http://www.fao.org/3/y0900e/y0900e06.htm#:~:text=Carbon%20sequestration&text=Typical%20sequestration%20rates%20for%20afforestation,et%20al.%2C%201996. Assessed 05 Jan 2021.

  • FAO. (2012). State of the world’s forest (Chapter 2) (p. 9). FAO.

    Google Scholar 

  • FAO, UNEP. (2020). The state of the world’s forests 2020. Forests, biodiversity and people, Rome. https://doi.org/10.4060/ca8642en. Accessed 10 July 2021.

  • Fouquet, R. (2016). Historical energy transitions: Speed, prices and system transformation. Energy Research & Social Science, 22, 7–12. ISSN 2214-6296.

    CrossRef  Google Scholar 

  • Ghosh, T. K., & Prelas, M. A. (2011). Energy resources and systems, Volume 2: Renewable energy (Vol. II). Springer.

    CrossRef  Google Scholar 

  • Griffith, S., & Calish, S. (2020). Mobilizing for a zero carbon America: Jobs, jobs, jobs, and more jobs, rewiring America. https://www.rewiringamerica.org/jobs-report. Accessed 28 Dec 2020.

  • Grübler, A., Wilson, C., & Nemet, G. (2016). Appels, oranges and consistent comparison of temporary dynamics of energy transition. Energy Policy, 22, 18–25.

    Google Scholar 

  • Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., & Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS, 104(31), 12942–12947.

    CrossRef  Google Scholar 

  • IEA. (2015). Estimates for 2015 are based on database of the International Energy Agency.

    Google Scholar 

  • IEA. (2019). CO2 emissions from fuel combustion (p. 147). International Energy Agency.

    Google Scholar 

  • Interest rate. (2020). Interest rates from 1694 to 2013. https://docs.google.com/spreadsheets/d/1OKo38R1blO71SGNIVuhaRZ4P2GYPpJQklmOymQiXixQ/edit?hl=en&hl=en#gid=0. Accessed 22 May 2020.

  • IPCC. (2012). Change, renewable energy sources and climate change mitigation (Intergovernmental, Panel on Climate) (p. 19). Cambridge University Press.

    Google Scholar 

  • Li, P., Peng, C., Wang, M., Li, W., Zhao, P., Wang, K., Yang, Y., & Zhu, Q. (2017). Quantification of the response of global terrestrial net primary production to multifactor global change, Ecological Indicators, 76, 245–255. https://www.sciencedirect.com/science/article/abs/pii/S1470160X17300274. Accessed 11 July 2021.

  • Markandya, A., & Wilkinson, P. (2007). Electricity generation and health. Lancet.com, Vol. 370 September 15, 2007.

    Google Scholar 

  • Nakicenovic, N. (2012). Global energy assessment – Toward a sustainable future. Cambridge University Press/The International Institute for Applied Systems Analysis.

    Google Scholar 

  • O’Connor, P. A., & Cleveland, C. J. (2014). U.S. energy transition 1780–2010. Energies, 7, 7955–7993.

    CrossRef  Google Scholar 

  • Resch, G., Held, A., Faber, T., Panzer, C., Toro, F., & Haas, R. (2008). Potentials and prospects for renewable energies at global scale. Energy Policy, 36, 4048–4056.

    CrossRef  Google Scholar 

  • Rogner, H.-H. (2000). Energy resources in UNDP (p. 167). World Energy Assessment.

    Google Scholar 

  • Ruether, J. A., Ramezan, M., & Balash, P. C. (2004). Greenhouse gas emission from coal gasification power generation system. Journal of Infrastructure System, 10(3), 111–119.

    CrossRef  Google Scholar 

  • Scientific American. (2020). https://www.scientificamerican.com/article/earthtalks-volcanoes-or-humans/ published 11-2-2009. Accessed 31 July 2020.

  • Smil, V. (2016). Examining energy transitions: A dozen insights based on performance. Energy Research & Social Science, 22, 194–197.

    CrossRef  Google Scholar 

  • Sovacool, B. K. (2016). How long will it take, conceptualizing the temporary dynamics of energy transition. Energy Research & Social Science, 13, 202–215.

    CrossRef  Google Scholar 

  • Suneeta, D., Fernandes, N., Trautmann, M., Streets, D. G., Roden, C. A., & Bond, T. C. (2007). Global biofuel use, 1850–2000. Global Biogeochemical Cycles, 21, 1–15.

    Google Scholar 

  • Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., & Mickley, L. J. (2021). Global mortality from outdoor fine particle pollution generated by 1 fossil fuel combustion: Results from GEOS-Chem. Environmental Research, 195, 110754.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Krozer, Y. (2022). Energy Resources and Pollution. In: Economics of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-90804-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90804-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90803-4

  • Online ISBN: 978-3-030-90804-1

  • eBook Packages: EnergyEnergy (R0)