Skip to main content

Enhancement of Blowout Limits in Lifted Swirled Flames in Methane-Air Combustor by the Use of Sinusoidally Driven Plasma Discharges

  • Conference paper
  • First Online:
Active Flow and Combustion Control 2021 (AFCC 2021)

Abstract

This study focuses on the effects of continuous volumetric discharge of sinusoidal plasma actuator at 20 kHz coupled directly with methane-air premixed flame in the near field of the injector exit. A plasma actuator composed of a needle-type electrode placed at the center of the nozzle, connected with high-voltage, while the nozzle was acted as a grounded electrode with different input electrical power values was designed to enhance lean blowout performance in a swirl model combustor. The ionic wind induced by the electrical body force given by the flow ionization leads to velocity disturbance and subsequently affects the flame. To investigate the possible mechanism of the combustion control by the plasma through the aerodynamic effect high speed flow visualization was analyzed under quiescent conditions. Flow visualizations showed that the plasma discharge affects the flow dynamics near the burner exit. It was observed that by increasing the electrical power used for the actuation a recirculation zone is formed in the non-reacting flow field. Furthermore, comparative experiments between conventional and plasma-assisted combustion were carried out to analyze the combustion enhancement in terms of lean blowout performance. The effect of the input electric power of the plasma actuator was studied, and it was seen that at coupled plasma powers corresponding to less than 1% of the thermal output power, there is a significant improvement in the blow-out limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A\(_{eff}\):

Effective area, [mm\(^{2}\)]

DBD :

Dielectric barrier discharge

f:

Frequency, [Hz]

FFT:

Fast Fourier transforms

HV:

High voltage

I(t):

Applied current signal, [A]

LBO:

Lean blow-out

\(\dot{m_{air}}\) :

Air mass flow rate, [kg/hr]

\(\dot{m_{fuel}}\) :

Fuel mass flow rate, [kg/hr]

NTP:

Non thermal plasma

P\(_{elec.}\):

Electrical Power consumed to produce the plasma, [W]

PIV:

Particle Image Velocimetry

SN:

Swirl number, [-]

SNR:

Signal to noise ratio

V(t):

Applied voltage signal, [V]

V\(_{pp}\):

Peak to peak voltage, [V]

V\(_{max}\):

Maximum voltage used to produce the plasma, [V]

\(\lambda \) :

Wavelength, [nm]

\(\varPhi _{0}\) :

Equivalence ratio without plasma actuation, [-]

References

  1. Wei, B., Wu, Y., Liang, H., Su, Z., Li, Y.: Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator. Aerosp. Sci. Technol. 96, 105584 (2020). https://doi.org/10.1016/j.ast.2019.105584

    Article  Google Scholar 

  2. Liu, F., Yan, H., Zhan, W., Xue, Y.: Effects of steady and pulsed discharge arcs on shock wave control in Mach 2.5 flow. Aerosp. Sci. Technol. 93, 105330 (2019). https://doi.org/10.1016/j.ast.2019.105330

  3. Sun, G., Wu, Z., Li, H., Zeng, L.: Discharge voltage characteristic in ablative pulsed plasma thrusters. Aerosp. Sci. Technol. 86, 153–159 (2019). https://doi.org/10.1016/j.ast.2019.01.017

    Article  Google Scholar 

  4. Cai, Z., Zhu, J., Sun, M., Wang, Z.: Effect of cavity fueling schemes on the laser-induced plasma ignition process in a scramjet combustor. Aerosp. Sci. Technol. 78, 197–204 (2018). https://doi.org/10.1016/j.ast.2018.04.016

    Article  Google Scholar 

  5. Cai, Z., Zhu, J., Sun, M., Wang, Z., Bai, X.-S.: Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor. Appl. Energy 228, 1777–1782 (2018). https://doi.org/10.1016/j.apenergy.2018.07.079

    Article  Google Scholar 

  6. Zhu, H., Hao, W., Li, C., Ding, Q., Wu, B.: Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp. Sci. Technol. 88, 468–480 (2019). https://doi.org/10.1016/j.ast.2019.03.022

    Article  Google Scholar 

  7. Tani, Y., Tsukizaki, R., Koda, D., Nishiyama, K., Kuninaka, H.: Performance improvement of the \(\mu \)10 microwave discharge ion thruster by expansion of the plasma production volume. Acta Astronaut. 157, 425–434 (2019). https://doi.org/10.1016/j.actaastro.2018.12.023

    Article  Google Scholar 

  8. Feng, R., Li, J., Wu, Y., Zhu, J., Song, X., Li, X.: Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor. Aerosp. Sci. Technol. 79, 145–153 (2018). https://doi.org/10.1016/j.ast.2018.05.036

    Article  Google Scholar 

  9. Wang, W., Chen, Q., Mao, X.: AC plasma retarded flame spread over thin solid fuels in a simulated microgravity environment. Aerosp. Sci. Technol. 92, 139–147 (2019). https://doi.org/10.1016/j.ast.2019.05.051

    Article  Google Scholar 

  10. De Giorgi, M.G., Motta, V., Suma, A.: Influence of actuation parameters of multi- DBD plasma actuators on the static and dynamic behavior of an airfoil in unsteady flow. Aerosp. Sci. Technol. 96, 105587 (2020). https://doi.org/10.1016/j.ast.2019.105587

    Article  Google Scholar 

  11. De Giorgi, M.G., et al.: Plasma assisted flame stabilization in a non-premixed lean burner. Energy Proc. 82, 410–416 (2015). https://doi.org/10.1016/j.egypro.2015.11.825

    Article  Google Scholar 

  12. De Giorgi, M.G., et al.: Lean blowout sensing and plasma actuation of non-premixed flames. IEEE Sens. J. 16(10), 3896–3903 (2016). https://doi.org/10.1109/JSEN.2016.2538970

    Article  Google Scholar 

  13. Rosocha, L.A., Kim, Y., Anderson, G.K., Abbate, S.: Combustion enhancement using silent electrical discharges. Int. J. Plasma Environ. Sci. Technol. 1(1), 8–13 (2007)

    Google Scholar 

  14. Ruma, M., Ahasan, H., Ranipet, H.B.: A survey of non-thermal plasma and their generation methods. Int. J. Renew. Energy Environ. Eng. 04(01), 006–012 (2016)

    Google Scholar 

  15. Hicks, A., Norberg, S., Shawcross, P., Lempert, W.R., Rich, J.W., Adamovich, I.V.: Singlet oxygen generation in a high pressure non-self-sustained electric discharge. J. Phys. D Appl. Phys. 38(20), 3812 (2005). https://doi.org/10.1088/0022-3727/38/20/007

    Article  Google Scholar 

  16. Raizer, Y.P.: Gas discharge physics. Springer, Barcelona (1991)

    Book  Google Scholar 

  17. Ju, Y., Sun, W.: Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48, 21–83 (2015). https://doi.org/10.1016/j.pecs.2014.12.002

    Article  Google Scholar 

  18. Aleksandrov, N.L., Kindysheva, S.V., Kukaev, E.N., Starikovsjaya, S.M., Starikovskii, A.Y.: Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge. Plasma Phys. Rep. 35(10), 867–882 (2009). https://doi.org/10.1134/S1063780X09100109

    Article  Google Scholar 

  19. De Giorgi, M.G., Ficarella, A., Fontanarosa, D., Elisa Pescini, E., Suma, A.: Investigation of the effects of plasma discharges on methane decomposition for combustion enhancement of a lean flame. Energies 13, 1452 (2020). https://doi.org/10.3390/en13061452

    Article  Google Scholar 

  20. Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., Starikovskii, A.Y.: Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures. Combust. Flame 154(3), 569–586 (2008). https://doi.org/10.1016/j.combustflame.2008.03.007

    Article  Google Scholar 

  21. Uddi, M., Jiang, N., Mintusov, E., Adamovich, I.V., Lempert, W.R.: Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence. Proc. Combust. Inst. 32, 929–936 (2009). https://doi.org/10.1016/j.proci.2008.06.049

    Article  Google Scholar 

  22. Zhu, J., et al.: Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air. Appl. Phys. Lett. 105 (2014). https://doi.org/10.1063/1.4903781

  23. Lee, D.H., Kim, K.T., Cha, M.S., Song, Y.H.: Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proc. Combust. Inst. 31, 3343–3351 (2007). https://doi.org/10.1016/j.proci.2006.07.230

    Article  Google Scholar 

  24. He, L., Chen, Y., Deng, J., Lei, J., Fei, L., Liu, P.: Experimental study of rotating gliding arc discharge plasma-assisted combustion in an aero-engine combustion chamber. Chin. J. Aeronaut. 32, 337–346 (2019). https://doi.org/10.1016/j.cja.2018.12.014

    Article  Google Scholar 

  25. Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame 156, 1627–1640 (2009). https://doi.org/10.1016/j.combustflame.2009.02.014

    Article  Google Scholar 

  26. Chen, Z., Ju, Y.: Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theory Model. 11, 427–453 (2007). https://doi.org/10.1080/13647830600999850

    Article  MathSciNet  MATH  Google Scholar 

  27. Taamallah, S., Shanbhogue, S.J., Ghoniem, A.F.: Turbulent flame stabilization modes in premixed swirl combustion: physical mechanism and Karlovitz number-based criterion. Combust. Flame 166, 19–33 (2016). https://doi.org/10.1016/j.combustflame.2015.12.007

    Article  Google Scholar 

  28. Liu, H., Zhao, J., Shui, C., Cai, W.: Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography. Aerosp. Sci. Technol. 91, 422–433 (2019). https://doi.org/10.1016/j.ast.2019.05.025

    Article  Google Scholar 

  29. Zhou, L.X.: Comparison of studies on flow and flame structures in different swirl combustors. Aerosp. Sci. Technol. 80, 29–37 (2018). https://doi.org/10.1016/j.ast.2018.06.032

    Article  Google Scholar 

  30. Wang, K., Li, F., Zou, P., Lin, X., Mao, R., Yu, X.: Effect of the fuel-air flow velocity on heat release rate of swirling non-premixed methane flames. Aerosp. Sci. Technol. 95 (2019). https://doi.org/10.1016/j.ast.2019.105465

  31. Pescini, E., Francioso, L., De Giorgi, M.G., Ficarella, A.: Investigation of a micro dielectric barrier discharge plasma actuator for regional aircraft active flow control. Plasma Sci. IEEE Trans. 43(10), 3668–3680 (2015). https://doi.org/10.1109/TPS.2015.2461016

    Article  Google Scholar 

  32. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems, 474–485 (1994)

    Google Scholar 

  33. Thielicke, W.: The Flapping Flight of Birds - Analysis and Application University of Groningen (2014). https://doi.org/10.1016/j.cja.2018.12.014. http://irs.ub.rug.nl/ppn/382783069

  34. Kasabov, P., Zarzalis, N., Habisreuther, P.: Experimental study on lifted flames operated with liquid kerosene at elevated pressure and stabilized by outer recirculation. Flow Turbul. Combust. 90, 605–619 (2013). https://doi.org/10.1007/s10494-013-9444-1

    Article  Google Scholar 

  35. Thielicke, W., Stamhuis, E.J.: PIVLab-time-resolved digital particle image velocimetry tool for MATLAB. Published under the BSD license, programmed with MATLAB 7, no. 0.246 (2014): R14

    Google Scholar 

Download references

Acknowledgment

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No. 831881 (CHAiRLIFT). The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia De Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Giorgi, M.G. et al. (2022). Enhancement of Blowout Limits in Lifted Swirled Flames in Methane-Air Combustor by the Use of Sinusoidally Driven Plasma Discharges. In: King, R., Peitsch, D. (eds) Active Flow and Combustion Control 2021. AFCC 2021. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 152 . Springer, Cham. https://doi.org/10.1007/978-3-030-90727-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90727-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90726-6

  • Online ISBN: 978-3-030-90727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics