Skip to main content

Formulation of Sensor Ranking Associated in Categorical Perception: A Pilot Study Using Machine Learning

  • Conference paper
  • First Online:
6th Kuala Lumpur International Conference on Biomedical Engineering 2021 (BIOMED 2021)

Abstract

The concept of categorical perception has been enormously investigated to digitalize the process of auditory processing when perceiving speech stimulus at higher brain neurological signal. Despite the nature non-stationary property of electroencephalography (EEG) during any task processing, scientists and clinicians find it to be not well fitted in the healthcare setting application without professional monitoring, and even worst, the hearing aid device functionality was also reported at a low success rate. In this study, we embraced machine learning technology and extracting contribution into our auditory research area. The present pilot work aims to create a robust computational framework to formulate the sensor ranking principle in auditory speech perception. The ranking for sensors could facilitate in identifying the minimal set sensor-of-interest (ROI) that are sufficient in specific auditory task processing using an optimally trained model. The trained Support Vector Machine (SVM) highest performance reported at random 2 training dataset with scoring of 92.3% using 70% triple-random training dataset. Based on the sensor ranking, the CZ electrode outperformed the other electrodes with scoring of 96.74%, followed by PZ and FPZ for the 2nd and 3rd rank (95.66% and 95.34% respectively). Our pilot study anticipated that the sensor ranking formula able to underline more precise neural correlates based on current auditory categorical perception response. The excellence sensor ranking in delivering a minimal set of sensor-of-interest (SOI) drive the capability of the SVM model in classifying auditory brain response in high-performance prediction metrics and possible reliability in the healthcare setting application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, H.-Y., Minett, J.W., Peng, G., Wang, W.S.Y.: The impact of tone systems on the categorical perception of lexical tones: an event-related potentials study. Lang. Cognit. Process. 27(2), 184–209 (2012)

    Article  Google Scholar 

  2. Bidelman, G.M., Lee, C.-C.: Effects of language experience and stimulus context on the neural organization and categorical perception of speech. Neuroimage 120, 191–200 (2015)

    Article  Google Scholar 

  3. Bidelman, G.M., Walker, B.S.: Attentional modulation and domain-specificity underlying the neural organization of auditory categorical perception. Eur. J. Neurosci. 45(5), 690–699 (2017)

    Article  Google Scholar 

  4. Mahmud, M.S., Ahmed, F., Yeasin, M., Bidelman, G.M.: Decoding categorical speech perception from evoked brain responses. In: 2020 IEEE Region 10 Symposium (TENSYMP), IEEE (2020)

    Google Scholar 

  5. Liberman, A.M., Mattingly, I.G.: A specialization for speech perception. Science 243(4890), 489–494 (1989)

    Article  Google Scholar 

  6. Franklin, A., Drivonikou, G.V., Clifford, A., Kay, P., Regier, T., Davies, I.R.: Lateralization of categorical perception of color changes with color term acquisition. Proc. Natl. Acad. Sci. 105(47), 18221–18225 (2008)

    Article  Google Scholar 

  7. Klein, M.E., Zatorre, R.J.: A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia 49(5), 878–887 (2011)

    Article  Google Scholar 

  8. Ting, H.N., ABakar, A.R., Santhosh, J., Al-Zidi, M.G.: Effects of speech phonological features during passive perception on cortical auditory evoked potential in sensorineural hearing loss. Sains Malaysiana 46(12), 2477–2488 (2017)

    Google Scholar 

  9. Van Yper, L.N., Dhooge, I.J., Vermeire, K., De Vel, E.F., Beynon, A.J.: The P300 auditory event-related potential as a method to assess the benefit of contralateral hearing aid use in bimodal listeners: a proof-of-concept. Int. J. Audiol. 59(1), 73–80 (2020)

    Article  Google Scholar 

  10. Engström, E., Kallioinen, P., von Mentzer, C.N., Lindgren, M., Ors, M., Sahlén, B., et al.: Computer-assisted reading intervention for children with sensorineural hearing loss using hearing aids: effects on auditory event-related potentials and mismatch negativity. Int. J. Pediatr. Otorhinolaryngol. 117, 17–25 (2019)

    Article  Google Scholar 

  11. Brown, A.D., Beemer, B.T., Greene, N.T., Argo IV, T., Meegan, G.D., Tollin, D.J.: Effects of active and passive hearing protection devices on sound source localization, speech recognition, and tone detection. PLoS One 10(8) (2015)

    Google Scholar 

  12. Paulraj, M., Subramaniam, K., Yaccob, S.B., Adom, A.H.B., Hema, C.: Auditory evoked potential response and hearing loss: a review. Open Biomed. Eng. J. 9, 17 (2015)

    Article  Google Scholar 

  13. Durankaya, S.M., Mutlu, B., Isler, Y., Uzun, Y., Kırkım, G.: Comparison of cortical auditory evoked potential findings in presbycusis with low and high word-recognition score. J. Am. Acad. Audiol. (2020)

    Google Scholar 

  14. Silva, L.A.F., Magliaro, F.C.L., Carvalho, A., Matas, C.G.: Maturation of long latency auditory evoked potentials in hearing children: systematic review. CoDAS (2017)

    Google Scholar 

  15. Duncan, C.C., Barry, R.J., Connolly, J.F., Fischer, C., Michie, P.T., Näätänen, R., et al.: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 120(11), 1883–1908 (2009)

    Article  Google Scholar 

  16. Jilla, A.M., Johnson, C.E., Danhauer, J.L., Anderson, M., Smith, J.N., Sullivan, J.C., et al.: Predictors of hearing aid use in the advanced digital era: an investigation of benefit, satisfaction, and self-efficacy. J. Am. Acad. Audiol. (2020)

    Google Scholar 

  17. Lerner, S.: Limitations of conventional hearing aids: examining common complaints and issues that can and cannot be remedied. Otolaryngol. Clin. North Am. 52(2), 211–220 (2019)

    Article  Google Scholar 

  18. Kozlowski, L., Ribas, A., Almeida, G., Luz, I.: Satisfaction of elderly hearing aid users. Int. Arch. Otorhinolaryngol. 21(01), 92–96 (2017)

    Article  Google Scholar 

  19. Wiens, J., Shenoy, E.S.: Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis. 66(1), 149–153 (2018)

    Article  Google Scholar 

  20. Ghassemi, M., Naumann, T., Schulam, P., Beam, A.L., Ranganath, R.: Opportunities in machine learning for healthcare (2018). arXiv:1806.00388

  21. Abbasi, B., Goldenholz, D.M.: Machine learning applications in epilepsy. Epilepsia 60(10), 2037–2047 (2019)

    Article  Google Scholar 

  22. Yperman, J., Becker, T., Valkenborg, D., Popescu, V., Hellings, N., Van Wijmeersch, B., et al.: Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BioRxiv 772996 (2019)

    Google Scholar 

  23. Ravan, M.: A machine learning approach using EEG signals to measure sleep quality. AIMS Electron. Electr. Eng. 3(4), 347 (2019)

    Article  Google Scholar 

  24. Bălan, O., Moise, G., Moldoveanu, A., Leordeanu, M., Moldoveanu, F.: An investigation of various machine and deep learning techniques applied in automatic fear level detection and acrophobia virtual therapy. Sensors 20(2), 496 (2020)

    Article  Google Scholar 

  25. Baker, J.M., Chan, A.M., Marinkovic, K., Halgren, E., Cash, S.: Machine learning for learning how the brain recognizes speech and language. In: Statistical And Perceptual Audition 2010 (2010)

    Google Scholar 

  26. Xie, Z., Reetzke, R., Chandrasekaran, B.: Machine learning approaches to analyze speech-evoked neurophysiological responses. J. Speech Lang. Hear. Res. 62(3), 587–601 (2019)

    Article  Google Scholar 

  27. Mahmud, M.S., Ahmed, F., Al-Fahad, R., Moinuddin, K.A., Yeasin, M., Alain, C., et al.: Decoding age-related changes in the spatiotemporal neural processing of speech using machine learning. bioRxiv, 786566 (2019)

    Google Scholar 

  28. Mahmud, M.S., Ahmed, F., Al-Fahad, R., Moinuddin, K.A., Yeasin, M., Alain, C., et al.: Decoding hearing-related changes in older adults’ spatiotemporal neural processing of speech using machine learning. Front. Neurosci. 14 (2020)

    Google Scholar 

  29. Mahmud, M.S., Ahmed, F., Yeasin, M., Alain, C., Bidelman, G.M.: Multivariate models for decoding hearing impairment using EEG gamma-band power spectral density. In: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE (2020)

    Google Scholar 

  30. Mohammed, G., Al-Zidi, J.S., Siew‐Cheok NG, Ibrahim Amer, I., Rauf, A., Bakar, A.: P2 and P3 as indicators of hearing aids performance in speech perception. Biomed. Eng./Biomedizinische Technik (2016)

    Google Scholar 

  31. Wang, R., Wang, J., Yu, H., Wei, X., Yang, C., Deng, B.: Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn. Neurodyn. 9(3), 291–304 (2015)

    Article  Google Scholar 

  32. Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician 12(3), 189–198 (1975)

    Google Scholar 

  33. Ruffini, G., Dunne, S., Farrés, E., Cester, I., Watts, P.C., Ravi, S., et al.: ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, IEEE (2007)

    Google Scholar 

  34. Dubreuil-Vall, L., Ruffini, G., Camprodon, J.A.: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Front. Neurosci. 14, 251 (2020)

    Article  Google Scholar 

  35. Tandle, A., Jog, N., D’cunha, P., Chheta, M.: Classification of artefacts in EEG signal recordings and EOG artefact removal using EOG subtraction. Commun. Appl. Electron. 4, 12–19 (2016)

    Article  Google Scholar 

  36. Korczak, P.A., Stapells, D.R.: Effects of various articulatory features of speech on cortical event-related potentials and behavioral measures of speech-sound processing. Ear. Hear. 31(4), 491–504 (2010)

    Article  Google Scholar 

  37. Bidelman, G.M., Moreno, S., Alain, C.: Tracing the emergence of categorical speech perception in the human auditory system. Neuroimage 79, 201–212 (2013)

    Article  Google Scholar 

  38. Yi, H.G., Xie, Z., Reetzke, R., Dimakis, A.G., Chandrasekaran, B.: Vowel decoding from single‐trial speech‐evoked electrophysiological responses: a feature‐based machine learning approach. Brain Beha. 7(6), e00665 (2017)

    Google Scholar 

  39. Stapells, D.R.: Cortical event-related potentials to auditory stimuli. Handbook Clin. Audiol. 5, 378–406 (2002)

    Google Scholar 

  40. Lightfoot, G.: Summary of the N1-P2 cortical auditory evoked potential to estimate the auditory threshold in adults. In: Seminars in Hearing. Thieme Medical Publishers (2016)

    Google Scholar 

  41. Steinhauer, K.: Event-related potentials (ERPs) in second language research: a brief introduction to the technique, a selected review, and an invitation to reconsider critical periods in L2. Appl. Linguist. amu028 (2014)

    Google Scholar 

  42. Papakostas, G.A., Diamantaras, K.I., Palmieri, F.A.: Emerging trends in machine learning for signal processing. Comput. Intell. Neurosci. 2017 (2017)

    Google Scholar 

  43. Hosseini, M.-P., Hosseini, A., Ahi, K.: A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. (2020)

    Google Scholar 

  44. McKearney, R.M., MacKinnon, R.C.: Objective auditory brainstem response classification using machine learning. Int. J. Audiol. 58(4), 224–230 (2019)

    Article  Google Scholar 

  45. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  46. Ilyas, M., Naït-Ali, A.: Machine Learning Based Detection of Hearing Loss Using Auditory Perception Responses. In: 2019 15th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), IEEE (2019)

    Google Scholar 

  47. Benítez-Barrera, C.R., Key, A.P., Ricketts, T.A., Tharpe, A.M.: Central auditory system responses from children while listening to speech in noise. Hear. Res. 403, 108165 (2021)

    Google Scholar 

  48. Mukari, S.Z.-M.S., Umat, C., Chan, S.C., Ali, A., Maamor, N., Zakaria, M.N.: Effects of age and type of stimulus on the cortical auditory evoked potential in healthy Malaysian children. J. Audiol. Otol. 24(1), 35 (2020)

    Article  Google Scholar 

  49. Silva, D.M., Rothe-Neves, R., Melges, D.B.: Long-latency event-related responses to vowels: N1–P2 decomposition by two-step principal component analysis. Int. J. Psychophysiol. 148, 93–102 (2020)

    Article  Google Scholar 

  50. Roque, L., Karawani, H., Gordon-Salant, S., Anderson, S.: Effects of age, cognition, and neural encoding on the perception of temporal speech cues. Front. Neurosci. 13, 749 (2019)

    Article  Google Scholar 

  51. Ibrahim, I.A., Ting, H.-N., Moghavvemi, M.: Formulation of a novel classification indices for classification of human hearing abilities according to cortical auditory event potential signals. Arab. J. Sci. Eng. 44(8), 7133–7147 (2019)

    Article  Google Scholar 

  52. Paulraj, M., Subramaniam, K., Yaccob, S.B., Adom, A.H.B., Hema. C.: A machine learning approach for distinguishing hearing perception level using auditory evoked potentials. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), IEEE (2014)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the RU Geran, Universiti Malaya (ST005-2020) and Public Service Department of Malaysia (JPA). The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khin Wee Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakar, A.R.A., Lai, K.W., Hamzaid, N.A. (2022). Formulation of Sensor Ranking Associated in Categorical Perception: A Pilot Study Using Machine Learning. In: Usman, J., Liew, Y.M., Ahmad, M.Y., Ibrahim, F. (eds) 6th Kuala Lumpur International Conference on Biomedical Engineering 2021. BIOMED 2021. IFMBE Proceedings, vol 86 . Springer, Cham. https://doi.org/10.1007/978-3-030-90724-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90724-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90723-5

  • Online ISBN: 978-3-030-90724-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics