Abstract
The pharmaceutical industry develops, manufactures, and markets medicines and drugs, and is an indispensable part of healthcare sectors. Millions of patients with life-threatening diseases are treated each year with medicines made by fungi, a mostly understudied group of immense commercial importance. The discovery of the treasure trove of fungal secondary metabolites like antibiotics, cholesterol-lowering drug, etc. intrigues the determination of the chemical potential of fungal strains and adoption of new strategies to awake the associated biosynthetic genes. Fungal existence in diverse types of habitat provides them the ability of developing various types of survival mechanism, and these properties make them a rich resource for being used in pharmaceutical industries. The relatively easier mechanism of cultivation and extraction of products made the fungi an important and nonexpensive source for the industries for developing medicinal drugs. The unique bioactive ingredients and their derivatives have attracted researchers for the development of new antibiotics effective against common bacterial diseases and various biofilm-associated chronic infections. This chapter would focus predominantly on the analysis of pharmaceutical competence of fungi, cultivation-based and genetic engineering-based methods, and their applicability for human welfare.
Keywords
- Fungi
- Bioactive compounds
- Secondary metabolites
- Pharmaceuticals
- Antibiotic
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abbanat, D., Leighton, M., Maiese, W., Jones, E. B., Pearce, C., & Greenstein, M. (1998). Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. I. Taxonomy and fermentation. The Journal of Antibiotics, 51, 296–302.
Abraham, W. R., & Estrela, A. B. (2016). Fungal metabolites for the control of biofilm infections. Agriculture, 6, 37.
Alberts, A. W., Chen, J., Kuron, G., Hunt, V., et al. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethyl glutaryl coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Science United States of America, 77, 3957–3961.
Alexandre, J., Raymond, E., Kaci, M. O., Brain, E. C., et al. (2004). Phase I and pharmacokinetic study of irofulven administered weekly or biweekly in advanced solid tumor patients. Clinical Cancer Research, 10, 3377–3385.
Allison, A. C., & Eugui, E. M. (2000). Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 47, 85–118.
Amna, T. (2006). Bioreactor studies on the endophytic fungus Entrophospora for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196.
Bai, R., Zhang, C. C., Yin, X., Wei, J., & Gao, J. M. (2015). Striatoids A-F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. Journal of Natural Products, 78, 783–788.
Bailey, A. M., Alberti, F., Kilaru, S., Collins, C. M., et al. (2016). Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Scientific Reports, 6, 25202.
Barber, M. S., Giesecke, U., Reichert, A., & Minas, W. (2004). Industrial enzymatic production of cephalosporin-basedbeta-lactams. Advances in Biochemical Engineering/Biotechnology, 88, 179–215.
Bashyal, B., Wellensiek, B., Ramakrishnan, R., Faeth, S. H., Ahmad, N., & Gunatilaka, A. A. (2014). Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorganic & Medicinal Chemistry, 22, 6112–6116.
Berdy, J. (1995). Are actinomycetes exhausted as a source of secondary metabolites? Proceedings of 9th International Symposium on the Biology of Actinomycetes, Part 1.
Bhadury, P., Mohammad, B. T., & Wright, P. C. (2006). The current status of natural products from marine fungi and their potential as anti-infective agents. Journal of Industrial Microbiology & Biotechnology, 2006(33), 325–337.
Bills, G. F., Platas, G., Fillola, A., Jimenez, M. R., Collado, J., Vicente, F., Martin, J., Gonzalez, A., Bur-Zimmermann, J., Tormo, J. R., et al. (2008). Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. Journal of Applied Microbiology, 104, 1644–1658.
Bills, G. F., Martın, J., Collado, J., Platas, G., et al. (2009). Measuring the distribution and diversity of antibiosis and secondary metabolites in the filamentous fungi. SIM News, 59, 133–147.
Brown, A. G., Smale, T. C., King, T. J., Hasenkamp, R., & Thompson, R. H. (1976). Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. Journal of the Chemical Society, 11, 1165–1170.
Bucknall, R. A., Moores, H., Simms, R., & Hesp, B. (1973). Antiviral effects of aphidicolin, a new antibiotic produced by Cephalosporium aphidicola. Antimicrobial Agents and Chemotherapy, 4, 294–298.
Bunyapaiboonsri, T., Yoiprommarat, S., Srisanoh, U., Choowong, W., et al. (2011). Isariotins G-J from cultures of the Lepidoptera pathogenic fungus Isaria tenuipes. Phytochemistry Letters, 4, 283–286.
Chen, M. C., Lai, J. N., Chen, P. C., & Wang, J. D. (2013). Concurrent use of conventional drugs with Chinese herbal products in Taiwan: A population-based study. Journal of Traditional and Complementary Medicine, 3, 256–262.
Chepkirui, C., Richter, C., Matasyoh, J. C., & Stadler, M. (2016). Monochlorinated calocerins A-D and 9-oxostrobilurin derivatives from the basidiomycete Favolaschia calocera. Phytochemistry, 132, 95–101.
Chepkirui, C., Cheng, T., Matasyoh, J., Decock, C., & Stadler, M. (2018). An unprecedented spiro [furan-2,1’ indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaceae, Basidiomycota) collected in Kenya. Phytochemistry Letters, 25, 141–146.
Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, A. D. (2006). Drug discovery from natural sources. The AAPS Journal, 8, 239–253.
Cooper, M. A., & Shlaes, D. (2011). Fix the antibiotics pipeline. Nature, 472, 32.
Crawford, K., Heatley, N. G., Boyd, P. F., Hale, C. W., Kelly, B. K., Miller, G. A., & Smith, N. (1952). Antibiotic production by a species of Cephalosporium. Journal of General Microbiology, 6, 47. https://doi.org/10.1099/00221287-6-1-2-47
Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., et al. (2013). Nucleotideresolution DNA double-strand breaks mapping by next-generation sequencing. Nature Methods, 10, 361–365.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. MMBR, 74, 417–433.
de Carvalho, M. P., Gulotta, G., do Amaral, M. W., Lunsdorf, H., et al. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum sensing and Mur A. Environmental Microbiology, 18, 4254–4264.
De Silva, N. I., Lumyong, S., Hyde, K. D., Bulgakov, T., et al. (2016). Mycosphere essays 9: Defining biotrophs and hemibiotrophs. Mycosphere, 7, 545–559.
Del-Cid, A., Gil-Duran, C., Vaca, I., Rojas-Aedo, J. F., Garcıa-Rico, R. O., Levican, G., & Chavez, R. (2016). Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One, 11(1), e0147047.
Denning, D. W. (2002). Echinocandins: A new class of antifungals. The Journal of Antimicrobial Chemotherapy, 49, 889–891.
Doshida, J., Hasegawa, H., Onuki, H., Shimidzu, N., & Exophilin, A. (1996). A new antibiotic from a marine microorganism Exophilia pisciphila. The Journal of Antibiotics, 49, 1105–1109.
Duetz, W. A., Ruedi, L., Hermann, R., O’Connor, K., Buchs, J., & Witholt, B. (2000). Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Applied and Environmental Microbiology, 66, 2641–2646.
Ehsanifard, Z., Mir-Mohammadrezaei, F., Safarzadeh, A., & Ghobad-Nejhad, M. (2017). Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. Journal of Herbmed Pharmacology, 6, 160–164.
Elander, R. P. (2003). Industrial production of lactam antibiotics. Applied Microbiology and Biotechnology, 61, 385–392.
Endo, A., Kuroda, M., & Tsujita, Y. (1976). ML-236A, ML-236B, and ML- 236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. The Journal of Antibiotics, 29, 1346–1348.
Gil-Ramırez, A., Caz, V., Smiderle, F. R., & Martin-Hernandez, R. (2016). Water-soluble compounds from Lentinula edodes influencing the HMG-CoA reductase activity and the expression of genes involved in the cholesterol metabolism. Journal of Agricultural and Food Chemistry, 64, 1910–1920.
Huang, M. Y., Lin, K. H., Lu, C. C., Chen, L. R., et al. (2017). The intensity of blue light-emitting diodes influences the antioxidant properties and sugar content of oyster mushrooms (Lentinus sajor-caju). Scientia Horticulturae, 218, 8–13.
Kaneko, M., Watashi, K., Kamisuki, S., Matsunaga, H., et al. (2015). A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate co transporting polypeptide. Journal of Virology, 89, 11945–11953.
Kanoh, K., Okada, A., Adachi, K., Imagawa, H., Nishizawa, M., Matsuda, S., Shizuri, Y., & Utsumi, R. (2008). Ascochytatin, a novel bioactive spirodioxynaphthalene metabolite produced by the marine-derived fungus, Ascochyta sp. NGB4. The Journal of Antibiotics, 61, 142–148.
Kensy, F., Zang, E., Faulhammer, C., Tan, R. K., & Buchs, J. (2009). Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microbial Cell Factories, 8, 31.
King, A. M. (2014). Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510, 503–506.
Kluepfel, D., Bagli, J., Baker, H., Charest, M.-P., Kudelski, A., Sehgal, S. N., & Vézina, C. (1972). Myriocin, a new antifungal antibiotic from Myriococcum albomyces. The Journal of Antibiotics, 25(2), 109–115.
Kück, U., Bloemendal, S., & Teichert, I. (2014). Putting fungi to work: Harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS One, 10, e1003950.
Lambert, C., Wendt, L., Hladki, A. I., Stadler, M., & Sir, E. B. (2019). Hypomontagnella (Hypoxylaceae): A new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycological Progress, 18, 187–201.
Li, W. L., Zheng, H. C., Bukuru, J., & De Kimpe, N. (2004). Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology, 92, 1–21.
Liberra, K., Jansen, R., & Lindequist, U. (1998). Corollosporine, a new phtalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie, 53, 578–581.
Liu, L., Gao, H., Chen, X., Cai, X., et al. (2010). Brasilamides A-D: Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. European Journal of Organic Chemistry, 17, 3302–3306.
Liu, L., Redden, H., & Alper, H. S. (2013). Frontiers of yeast metabolic engineering: Diversifying beyond ethanol and Saccharomyces. Current Opinion in Biotechnology, 24, 1023–1030.
Ma, X., Li, L., Zhu, T., Ba, M., et al. (2013). Phenylspirodrimanes with anti- HIV activity from the sponge-derived fungus Stachybotrys chartarum MXHX73. Journal of Natural Products, 76(12), 2298–2306.
Martín, J. (2012). The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the LaeA regulator. Fungal Genetics and Biology, 49, 1004–1013.
Masuma, R., Yamaguchi, Y., Noumi, M., Omura, S., & Namikoshi, M. (2001). Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42, 455–459.
Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A., & Butler, P. C. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 48, 2221–2228.
Miao, L., Kwong, T. F., & Qian, P. Y. (2006). Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Applied Microbiology and Biotechnology, 72, 1063–1073.
Mikolasch, A., Hessel, S., Salazar, M. G., Neumann, H., Manda, K., Gordes, D., Schmidt, E., Thurow, K., Hammer, E., Lindequist, U., et al. (2008). Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chemical & Pharmaceutical Bulletin, 56, 781–786.
Miller, S. J. (2001). Emerging mechanisms for secondary cardioprotective effects of statins. Cardiovascular Research, 52, 5–7.
Miller, J. D., & Savard, M. E. (1989). Antibiotic activity of the marine fungus Leptosphaeria oraemaris. Proceedings of the Nova Scotian Institute of Science, 39, 51–58.
Minagawa, K., Kouzuki, S., Yoshimoto, J., Kawamura, Y., et al. (2002). Stachyflin and acetylstachyflin, novel anti-influenza a virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. The Journal of Antibiotics, 55, 155–164.
Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461–477.
Ng, T. B., Cheung, R. C., Wong, J. H., Bekhit, A. A., & Bekhit Ael, D. (2015). Antibacterial products of marine organisms. Applied Microbiology and Biotechnology, 99, 4145–4173.
Pang, X., Zhao, J., Fang, X., & Zhang, T. (2017). Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities. Journal of Natural Products, 80, 2595–2601.
Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22, 189–259.
Pejin, B. K., Jovanovic, K., Mojovic, M. G., & Savic, A. (2013). New and highly potent antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012. Current Topics in Medicinal Chemistry, 13, 2745–2766.
Pelaez, F., Cabello, A., Platas, G., Dıez, M. T., et al. (2000). The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Systematic and Applied Microbiology, 23, 333–343.
Phukhamsakda, C., Macabeo, A. P. G., Yuyama, K., Hyde, K. D., & Stadler, M. (2018). Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete fungus, Roussoella sp. Molecules, 23, 2190.
Pointing, S. B., Pelling, A. L., Smith, G. J. D., Hyde, K. D., & Reddy, C. A. (2001). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research, 109, 115–124.
Posch, A. E., Herwig, C., & Spadiut, O. (2013). Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 31, 37–44.
Poucheret, P., Fons, F., & Rapior, S. (2006). Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogamie Mycologie, 27, 311–333.
Qi, S.-H., Xu, Y., Xiong, H.-R., Qian, P.-Y., & Zhang, S. (2008). Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World Journal of Microbiology and Biotechnology, 25, 399–406.
Quian, P.-Y., Li, Y., Kwong, F. N., Yang, L. H., & Dobretsov, S. V. (2006). Use of marine fungus originated compounds as antifouling agents. U.S. Patent US2006/0147410 A1.
Riley, G. L., Tucker, K. G., Paul, G. C., & Thomas, C. R. (2000). Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnology and Bioengineering, 68, 160–172.
Rowley, D. C., Kelly, S., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorganic & Medicinal Chemistry, 11, 4263–4274.
Sacramento, C. Q., Marttorelli, A., Fintelman-Rodrigues, N., de Freitas, C. S., et al. (2015). Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One, 10, e0139236.
Samorski, M., Müller-Newen, G., & Buchs, J. (2005). Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnology and Bioengineering, 92, 61–68.
Sandargo, B., Thongbai, B., Padutya, D., Steinmann, E., et al. (2018). Antiviral 4-hydroxypleurogrisein and antimicrobial pleurotin derivatives from cultures of nematophagous basidiomycete Hohenbuehelia grisea. Molecules, 23, 2697.
Sandargo, B., Michehl, M., Praditya, D., Steinmann, E., Stadler, M., & Surup, F. (2019). Antiviral meroterpenoid rhodatin and sesquiterpenoids rhodocoranes A-E from the wrinkled peach mushroom, Rhodotus palmatus. Organic Letters, 21, 3286–3289.
Saravolatz, L. D., Deresinski, S. C., & Stevens, D. A. (2003). Caspofungin. Clinical Infectious Diseases, 36(11), 1445–1457. https://doi.org/10.1086/375080
Shang, S. (2011). Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrobial Agents and Chemotherapy, 55, 124–131.
Silber, J., Ohlendorf, B., Labes, A., Erhard, A., & Imhoff, J. F. (2013). Calcarides A–E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Marine Drugs, 11, 3309–3323.
Singh, S. B., Ondeyka, J. G., Tsipouras, N., Ruby, C., et al. (2004). Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease. Biochemical and Biophysical Research Communications, 324, 108–113.
Stähelin, H. F. (1996). The history of cyclosporin A (Sandimmune®) revisited: Another point of view. Experientia, 52(1), 5–13. https://doi.org/10.1007/bf01922409
Surup, F., Kuhnert, E., Lehmann, E., Heitkamper, S., et al. (2014). Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycology, 5, 110–119.
Tamminen, A., Wang, Y., & Wiebe, M. G. (2015). Production of calcaride A by Calcarisporium sp. in shaken flasks and stirred bioreactors. Marine Drugs, 13, 3992–4005.
Tan, S., Yang, B., Liu, J., Xun, T., et al. (2017). Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Natural Product Research, 19, 1–5.
Tang, H., Huang, W., Ma, J., & Liu, L. (2018). SWOT analysis and revelation in traditional Chinese medicine internationalization. Chinese Medicine, 13, 1–9.
Thongbai, B., Rapior, S., Hyde, K. D., Wittstein, K., & Stadler, M. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress, 14, 1–23.
Tian, Y., Lin, X., Wang, Z., Zhou, X., et al. (2016). Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules, 21, 34/1–34/10.
Vance, D. (1972). Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochemical and Biophysical Research Communications, 48, 649–656.
Wallwey, C., & Li, S.-M. (2011). Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Natural Product Reports, 28(3), 496–510. https://doi.org/10.1039/c0np00060d
Walser, J., & Heinstein, P. F. (1973). Mode of action of illudin S. Antimicrobial Agents and Chemotherapy, 3, 357–363.
Wang, G. Y., Laidlaw, R. D., Marshall, J., & Keasling, J. D. (2003). Metabolic engineering of fungal secondary metabolic pathways. In Z. Q. An (Ed.), Handbook of industrial mycology (p. 10016). Marcel Dekker.
Wang, J., Wei, X., Qin, X., Tian, X., et al. (2016). Antiviral merosesquiterpenoids produced by the antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. Journal of Natural Products, 79, 59–65.
Wu, B., Wiese, J., Labes, A., Kramer, A., Schmaljohann, R., & Imhoff, J. F. (2015). Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Marine Drugs, 13, 4617–4632.
Xiong, H., Qi, S., Xu, Y., Miao, L., & Qian, P. Y. (2009). Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. Journal of Hydro-environment Research, 2, 264–270.
Xiong, Z. Q., Wang, J. F., Hao, Y. Y., & Wang, Y. (2013). Recent advances in the discovery and development of marine microbial natural products. Marine Drugs, 11, 700–717.
Xu, B., Yin, Y., Zhang, F., Li, Z., & Wang, L. (2012). Operating conditions optimization for (+)-terrein production in a stirred bioreactor by Aspergillus terreus strain PF-26 from marine sponge Phakellia fusca. Bioprocess and Biosystems Engineering, 35, 1651–1655.
Yue, Q., Chen, L., Zhang, X., Li, K., et al. (2015). Evolution of chemical diversity in the echinocandin lipopeptide antifungal metabolites. Eukaryotic Cell, 14(7), 76.
Zhou, H., Li, L., Wang, W., Che, Q., et al. (2015). Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. Journal of Natural Products, 78, 1442–1445.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dutta, B., Lahiri, D., Nag, M., Ghosh, S., Dey, A., Ray, R.R. (2022). Fungi in Pharmaceuticals and Production of Antibiotics. In: Shukla, A.C. (eds) Applied Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-90649-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-90649-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90648-1
Online ISBN: 978-3-030-90649-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)