Skip to main content

Care of the Child with a Renal Problem

  • 116 Accesses

Abstract

This chapter will review common tests ordered to evaluate urological or renal dysfunction. A urinalysis is the first step in evaluating a child with a possible UTI. The methods of doing a urine culture and evaluating the results are key to early identification and treatment. To evaluate the child with hematuria and/or proteinuria requires a basic knowledge of common tests. Disorders of the kidneys can lead to various symptoms such as failure to thrive, fatigue, poor sleep, urinary incontinence, failure to toilet train, edema, or headache. The clinician must understand how to evaluate the metabolic profile and interpret various related tests such as vitamin D and glomerular filtration rate.

Keywords

  • Urinalysis
  • Urinary tract infection
  • Dipstick
  • Proteinuria
  • Hematuria
  • Renal tubular acidosis
  • Total CO2
  • Anion gap
  • Nephrotic syndrome
  • Albumin
  • Glomerular filtration rate
  • Schwartz formula
  • Vitamin D
  • Hyperlipidemia
  • Hypokalemia
  • Hyperkalemia
  • Hypocalcemia
  • Hypercalcemia

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90642-9_10
  • Chapter length: 47 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-90642-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   99.99
Price excludes VAT (USA)

References

  • Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol. 2018;14(1):57–70.

    CAS  PubMed  CrossRef  Google Scholar 

  • Al Balushi A, Mackie AS. Protein-losing enteropathy following Fontan palliation. Can J Cardiol. 2019;35(12):1857–60.

    PubMed  CrossRef  Google Scholar 

  • Alexander RT, Bitzan M. Renal tubular acidosis. Pediatr Clin N Am. 2019;66(1):135–57.

    CrossRef  Google Scholar 

  • Alharbi FM. Update in vitamin D and multiple sclerosis. Neurosciences (Riyadh). 2015;20(4):329–35.

    CrossRef  Google Scholar 

  • Andolino TP, Reid-Adam J. Nephrotic syndrome. Pediatr Rev. 2015;36(3):117–25. quiz 26, 29

    PubMed  CrossRef  Google Scholar 

  • Ayala-Lopez N, Harb R. Interpreting anion gap values in adult and pediatric patients: examining the reference interval. J Appl Lab Med. 2020;5(1):126–35.

    PubMed  CrossRef  Google Scholar 

  • Bak M, Serdaroglu E, Guclu R. Prophylactic calcium and vitamin D treatments in steroid-treated children with nephrotic syndrome. Pediatr Nephrol. 2006;21(3):350–4.

    PubMed  CrossRef  Google Scholar 

  • Banerjee S, Basu S, Akhtar S, Sinha R, Sen A, Sengupta J. Free vitamin D levels in steroid-sensitive nephrotic syndrome and healthy controls. Pediatr Nephrol. 2020;35(3):447–54.

    PubMed  CrossRef  Google Scholar 

  • Banerjee S, Basu S, Sen A, Sengupta J. The effect of vitamin D and calcium supplementation in pediatric steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2017;32(11):2063–70.

    PubMed  CrossRef  Google Scholar 

  • Banerjee S, Basu S, Sengupta J. Vitamin D in nephrotic syndrome remission: a case-control study. Pediatr Nephrol. 2013;28(10):1983–9.

    PubMed  CrossRef  Google Scholar 

  • Baum M. Pediatric glomerular diseases. Curr Opin Pediatr. 2008;20(2):137–9.

    PubMed  CrossRef  Google Scholar 

  • Baum M, Quigley R. Ontogeny of proximal tubule acidification. Kidney Int. 1995;48(6):1697–704.

    CAS  PubMed  CrossRef  Google Scholar 

  • Berend K. Review of the diagnostic evaluation of normal anion gap metabolic acidosis. Kidney Dis (Basel). 2017;3(4):149–59.

    CrossRef  Google Scholar 

  • Bianchetti MG, Simonetti GD, Lava SAG, Bettinelli A. Differential diagnosis and management of Fluid, electrolyte, and acid-base disorders. In: Geary DF, Schaefer F, editors. Pediatric kidney disease. Berlin, Heidelberg: Springer Berlin/Heidelberg; 2017. p. 825–82.

    Google Scholar 

  • Bikle DD, Malmstroem S, Schwartz J. Current controversies: are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol Metab Clin N Am. 2017;46(4):901–18.

    CrossRef  Google Scholar 

  • Biyikli NK, Emre S, Sirin A, Bilge I. Biochemical bone markers in nephrotic children. Pediatr Nephrol. 2004;19(8):869–73.

    PubMed  CrossRef  Google Scholar 

  • Brown DD, Reidy KJ. Approach to the child with Hematuria. Pediatr Clin N Am. 2019;66(1):15–30.

    CrossRef  Google Scholar 

  • Chan JCM, Scheinman JI, Roth KS. Consultation with the specialist: renal tubular acidosis. Pediatr Rev. 2001;22(8):277.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaudhari PP, Monuteaux MC, Bachur RG. Urine concentration and pyuria for identifying UTI in infants. Pediatrics. 2016;138(5):e20162370.

    PubMed  CrossRef  Google Scholar 

  • Chen Y, Wan JX, Jiang DW, Fu BB, Cui J, Li GF, et al. Efficacy of calcitriol in treating glucocorticoid induced osteoporosis in patients with nephrotic syndrome: an open-label, randomized controlled study. Clin Nephrol. 2015;84(5):262–9.

    CAS  PubMed  CrossRef  Google Scholar 

  • Cobbaert CM, Baadenhuijsen H, Weykamp CW. Prime time for enzymatic creatinine methods in pediatrics. Clin Chem. 2009;55(3):549–58.

    CAS  PubMed  CrossRef  Google Scholar 

  • Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68.

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa A, Curro G, Pellegrino S, Lucanto MC, Tuccari G, Ieni A, Visalli G, Magazzu G, Santoro D. Case report on pathogenetic link between gluten and IgA nephropathy. BMC Gastroenterol. 2018;18(1):64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cyriac J, Holden K, Tullus K. How to use urine dipsticks. Arch Dis Child Educ Pract Ed. 2017;102(3):148–54.

    CAS  PubMed  CrossRef  Google Scholar 

  • Daly K, Farrington E. Hypokalemia and hyperkalemia in infants and children: pathophysiology and treatment. J Pediatr Health Care. 2013;27(6):486–96. quiz 97-8

    PubMed  CrossRef  Google Scholar 

  • Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol. 2017;14(5):296–310.

    Google Scholar 

  • de la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H. Vitamin D and cardiovascular health. Clin Nutr. 2020;29:S0261-5614(20)30700-7.

    Google Scholar 

  • Delanaye P, Cavalier E, Pottel H. Serum creatinine: not so simple! Nephron. 2017;136(4):302–8.

    CAS  PubMed  CrossRef  Google Scholar 

  • Delanghe JR, Speeckaert MM. Preanalytics in urinalysis. Clin Biochem. 2016;49(18):1346–50.

    CAS  PubMed  CrossRef  Google Scholar 

  • Desai DJ, Gilbert B, McBride CA. Paediatric urinary tract infections: diagnosis and treatment. Aust Fam Physician. 2016;45(8):558–63.

    PubMed  Google Scholar 

  • Ding WY, Saleem MA. Current concepts of the podocyte in nephrotic syndrome. Kidney Res Clin Pract. 2012;31(2):87–93.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Doern CD, Richardson SE. Diagnosis of urinary tract infections in children. J Clin Microbiol. 2016;54(9):2233–42.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dong JY, Zhang WG, Chen JJ, Zhang ZL, Han SF, Qin LQ. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients. 2013;5(9):3551–62.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Eneman B, Levtchenko E, van den Heuvel B, Van Geet C, Freson K. Platelet abnormalities in nephrotic syndrome. Pediatr Nephrol. 2016;31(8):1267–79.

    PubMed  CrossRef  Google Scholar 

  • Evans DC, Corkins MR, Malone A, Miller S, Mogensen KM, Guenter P, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper. Nutr Clin Pract. 2020;

    Google Scholar 

  • Facchini L, Venturini E, Galli L, de Martino M, Chiappini E. Vitamin D and tuberculosis: a review on a hot topic. J Chemother. 2015;27(3):128–38.

    CAS  PubMed  CrossRef  Google Scholar 

  • Filice CE, Green JC, Rosenthal MS, Ross JS. Pediatric screening urinalysis: a difference-in-differences analysis of how a 2007 change in guidelines impacted use. BMC Pediatr. 2014;14:260.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Finer G, Landau D. Clinical approach to proximal renal tubular acidosis in children. Adv Chronic Kidney Dis. 2018;25(4):351–7.

    PubMed  CrossRef  Google Scholar 

  • Flynn JTKD, Baker-Smith CM, et al. Subcommittee on Screening and Management of High Blood Pressure in Children. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2018;142(3).

    Google Scholar 

  • Foreman JW. Fanconi syndrome. Pediatr Clin N Am. 2019;66(1):159–67.

    CrossRef  Google Scholar 

  • Freundlich M, Bourgoignie JJ, Zilleruelo G, Abitbol C, Canterbury JM, Strauss J. Calcium and vitamin D metabolism in children with nephrotic syndrome. J Pediatr. 1986;108(3):383–7.

    CAS  PubMed  CrossRef  Google Scholar 

  • Fritzenwanker M, Imirzalioglu C, Chakraborty T, Wagenlehner FM. Modern diagnostic methods for urinary tract infections. Expert Rev Anti Infect Ther. 2016;14(11):1047–63.

    Google Scholar 

  • Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–54.

    CAS  PubMed  CrossRef  Google Scholar 

  • Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, et al. Management of childhood onset nephrotic syndrome. Pediatrics. 2009;124(2):747–57.

    PubMed  CrossRef  Google Scholar 

  • Glatstein M, Carbell G, Boddu SK, Bernardini A, Scolnik D. The changing clinical presentation of hypertrophic pyloric stenosis: the experience of a large, tertiary care pediatric hospital. Clin Pediatr. 2011;50(3):192–5.

    CrossRef  Google Scholar 

  • Golden NH, Carey DE. Vitamin D in Health and Disease in Adolescents: When to Screen, Whom to Treat, and How to Treat. Adolesc Med State Art Rev. 2016;27(1):125–39.

    Google Scholar 

  • Greenbaum LA. Electrolyte and acid-base disorders. In: Kleigman RM, St Geme JW, Blum NJ, Shah SS, Tasker RC, Wilson KM, editors. Nelson textbook of pediatrics. Philadelphia, PA: Elsevier; 2020. p. 389–425.e1.

    Google Scholar 

  • Greenbaum LA, Benndorf R, Smoyer WE. Childhood nephrotic syndrome—current and future therapies. Nat Rev Nephrol. 2012;8(8):445–58.

    CAS  PubMed  CrossRef  Google Scholar 

  • Guh JY. Proteinuria versus albuminuria in chronic kidney disease. Nephrology (Carlton). 2010;15(Suppl 2):53–6.

    CAS  CrossRef  Google Scholar 

  • Gulati K, McAddo SP. Anti-glomerular basement membrane disease. Rheum Dis Clin N Am. 2018;44(4):651–73.

    CrossRef  Google Scholar 

  • Gulati S, Sharma RK, Gulati K, Singh U, Srivastava A. Longitudinal follow-up of bone mineral density in children with nephrotic syndrome and the role of calcium and vitamin D supplements. Nephrol Dial Transplant. 2005;20(8):1598–603.

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanudel MR, Salusky IB. Treatment of pediatric chronic kidney disease-mineral and bone disorder. Curr Osteoporos Rep. 2017;15(3):198–206.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hari P, Khandelwal P, Smoyer WE. Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr Nephrol. 2020;35(9):1601–19.

    PubMed  CrossRef  Google Scholar 

  • Heath AK, Hodge AM, Ebeling PR, Eyles DW, Kvaskoff D, Buchanan DD, et al. Circulating 25-Hydroxyvitamin D concentration and risk of breast, prostate, and colorectal cancers: the Melbourne Collaborative Cohort Study. Cancer Epidemiol Biomark Prev. 2019;28(5):900–8.

    CAS  CrossRef  Google Scholar 

  • Hechanova LA. Renal tubular acidosis. 2020. retrieved from https://www.merckmanuals.com/professional/genitourinary-disorders/renal-transport-abnormalities/renal-tubular-acidosis

  • Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA. Expressing glomerular filtration rate in children. Pediatr Nephrol. 1991;5(1):5–11.

    CAS  PubMed  CrossRef  Google Scholar 

  • Herrmann M, Farrell C-JL, Pusceddu I, Fabregat-Cabello N, Cavalier E. Assessment of vitamin D status—a changing landscape. Clin Chem Lab Med (CCLM). 2017;55(1):3–26.

    CAS  CrossRef  Google Scholar 

  • Hewitt I, Montini G. Vesicoureteral reflux is it important to find? Pediatr Nephrol. 2021;36(4):1011–7.

    Google Scholar 

  • Hoxha TF, Azemi M, Avdiu M, Ismaili-Jaha V, Grajqevci V, Petrela E. The usefulness of clinical and laboratory parameters for predicting severity of dehydration in children with acute gastroenteritis. Med Arch. 2014;68(5):304–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang JP, Bai KM, Wang BL. Vitamin D and calcium metabolism in children with nephrotic syndrome of normal renal function. Chin Med J. 1992;105(10):828–32.

    CAS  PubMed  Google Scholar 

  • Iorember F, Aviles D. Anemia in nephrotic syndrome: approach to evaluation and treatment. Pediatr Nephrol. 2017;32(8):1323–30.

    PubMed  CrossRef  Google Scholar 

  • Joyce E, Glasner P, Ranganathan S, Swiatecka-Urban A. Tubulointerstitial nephritis: diagnosis, treatment, and monitoring. Pediatr Nephrol. 2017;32(4):577–87.

    PubMed  CrossRef  Google Scholar 

  • KDOQI. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–201.

    Google Scholar 

  • Kamińska J, Dymicka-Piekarska V, Tomaszewska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Diagnostic utility of protein to creatinine ratio (P/C ratio) in spot urine sample within routine clinical practice. Crit Rev Clin Lab Sci. 2020;57(5):345–64.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaplan BS, Pradhan M. Urinalysis interpretation for pediatricians. Pediatr Ann. 2013;42(3):45–51.

    PubMed  CrossRef  Google Scholar 

  • Karavanaki KA, Soldatou A, Koufadaki AM, Tsentidis C, Haliotis FA, Stefanidis CJ. Delayed treatment of the first febrile urinary tract infection in early childhood increased the risk of renal scarring. Acta Paediatr. 2017;106(1):149–54.

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaufman J, Temple-Smith M, Sanci L. Urinary tract infections in children: an overview of diagnosis and management. BMJ Paediatr Open. 2019;3(1):e000487.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • KDIGO. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  • KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150.

    Google Scholar 

  • KDIGO. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl (2011). 2017;7(1):1–59.

    Google Scholar 

  • Klemm KM, Klein MJ. Biochemical markers of bone metabolism. In: McPherson RA, Pincus MR, editors. Henry’s clinical diagnosis and management by laboratory medicine. 23rd ed. St. Louis, Missouri: Elsevier; 2017. p. 188–204.e2.

    Google Scholar 

  • Kraut JA, Madias NE. Re-evaluation of the normal range of serum total CO2 concentration. Clin J Am Soc Nephrol. 2018;13(2):343–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid-base disorders: what are its limitations, and can its effectiveness be improved? Clin J Am Soc Nephrol. 2013;8(11):2018–24.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ladenhauf HN, Stundner O, Spreitzhofer F, Deluggi S. Severe hyperphosphatemia after administration of sodium-phosphate containing laxatives in children: case series and systematic review of literature. Pediatr Surg Int. 2012;28(8):805–14.

    PubMed  CrossRef  Google Scholar 

  • Lai H-C, Chang S-N, Lin H-C, Hsu Y-L, Wei H-M, Kuo C-C, et al. Association between urine pH and common uropathogens in children with urinary tract infections. J Microbiol Immunol Infect. 2019;

    Google Scholar 

  • Larcombe J. Urinary tract infection in children: recurrent infections. BMJ Clin Evid. 2015;2015:0306.

    PubMed  PubMed Central  Google Scholar 

  • Lee YM, Baek SY, Kim JH, Kim DS, Lee JS, Kim PK. Analysis of renal biopsies performed in children with abnormal findings in urinary mass screening. Acta Paediatr. 2006;95(7):849–53.

    Google Scholar 

  • Lehnhardt A, Kemper MJ. Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol. 2011;26(3):377–84.

    PubMed  CrossRef  Google Scholar 

  • Leite HP, Rodrigues da Silva AV, de Oliveira Iglesias SB, Koch Nogueira PC. Serum albumin is an independent predictor of clinical outcomes in critically ill children. Pediatr Crit Care Med. 2016;17(2):e50–7.

    PubMed  CrossRef  Google Scholar 

  • Leung AK, Wong AH. Proteinuria in children. Am Fam Physician. 2010;82(6):645–51.

    PubMed  Google Scholar 

  • Leung AK, Wong AH, Barg SS. Proteinuria in children: evaluation and differential diagnosis. Am Fam Physician. 2017;95(4):248–54.

    PubMed  Google Scholar 

  • Leung AKC, Wong AHC, Leung AAM, Hon KL. Urinary tract infection in children. Recent Patents Inflamm Allergy Drug Discov. 2019;13(1):2–18.

    CAS  CrossRef  Google Scholar 

  • Levey AS. Selecting the right estimated glomerular filtration rate. In: Essentials of chronic kidney disease [internet]. New York, NY: Nova Science; 2015. [11-6].

    Google Scholar 

  • Liamis G, Liberopoulos E, Barkas F, Elisaf M. Spurious electrolyte disorders: a diagnostic challenge for clinicians. Am J Nephrol. 2013;38(1):50–7.

    PubMed  CrossRef  Google Scholar 

  • Lietman SA, Germain-Lee EL, Levine MA. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010;22(4):508–15.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lo S. Reference intervals for laboratory tests and procedures. In: Kleigman RM, St Geme JW, Blum NJ, Shah SS, Tasker RC, Wilson KM, editors. Nelson textbook of pediatrics. Philadelphia, PA: Elsevier; 2020. p. e5–e14.

    Google Scholar 

  • Loh TP, Metz MP. Trends and physiology of common serum biochemistries in children aged 0-18 years. Pathology. 2015;47(5):452–61.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lombel RM, Gipson DS, Hodson EM. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol. 2013;28(3):415–26.

    PubMed  CrossRef  Google Scholar 

  • Lopez-Garcia SC, Emma F, Walsh SB, Fila M, Hooman N, Zaniew M, et al. Treatment and long-term outcome in primary distal renal tubular acidosis. Nephrol Dial Transplant. 2019;34(6):981–91.

    CAS  PubMed  CrossRef  Google Scholar 

  • Lozano P, Henrikson NB, Morrison CC, Dunn J, Nguyen M, Blasi P, et al. U.S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews. Lipid screening in childhood for detection of multifactorial dyslipidemia: a systematic evidence review for the US preventive services task force. Rockville (MD): Agency for Healthcare Research and Quality (US); 2016.

    Google Scholar 

  • Mambatta AK, Jayarajan J, Rashme VL, Harini S, Menon S, Kuppusamy J. Reliability of dipstick assay in predicting urinary tract infection. J Family Med Prim Care. 2015;4(2):265–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Marra G, Taroni F, Berrettini A, Montanari E, Manzoni G, Montini G. Pediatric nephrolithiasis: a systematic approach from diagnosis to treatment. J Nephrol. 2019;32(2):199–210.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazaheri M, Assadi F. Simplified algorithm for evaluation of proteinuria in clinical practice: how should a clinician approach? Int J Prev Med. 2019;10:35.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • McIntyre NJ, Taal MW. How to measure proteinuria? Curr Opin Nephrol Hypertens. 2008;17(6):600–3.

    CAS  PubMed  CrossRef  Google Scholar 

  • McPherson RA. Specific proteins. In: McPherson RA, editor. Henry’s clinical diagnosis and management by laboratory methods. 23rd ed. St. Louis, Missouri: Elsevier; 2017. p. 253–66.e2.

    Google Scholar 

  • Meyrier A, Niaudet P. Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int. 2018;94(5):861–9.

    PubMed  CrossRef  Google Scholar 

  • Mian AN, Schwartz GJ. Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis. 2017;24(6):348–56.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122(2):398–417.

    PubMed  CrossRef  Google Scholar 

  • Montini G, Tullus K, Hewitt I. Febrile urinary tract infections in children. N Engl J Med. 2011;365:239–50.

    CAS  PubMed  CrossRef  Google Scholar 

  • Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mutlu EA, Keshavarzian A, Mutlu GM. Hyperalbuminemia and elevated transaminases associated with high-protein diet. Scand J Gastroenterol. 2006;41(6):759–60.

    CAS  PubMed  CrossRef  Google Scholar 

  • Nadar R, Shaw N. Investigation and management of hypocalcaemia. Arch Dis Child. 2020;105(4):399.

    PubMed  CrossRef  Google Scholar 

  • Nagami GT. Hyperchloremia—why and how. Nefrologia. 2016;36(4):347–53.

    PubMed  CrossRef  Google Scholar 

  • Nielsen CA, Jensen JE, Cortes D. Vitamin D status is insufficient in the majority of children at diagnosis of nephrotic syndrome. Dan Med J. 2015;62(2):A5017.

    PubMed  Google Scholar 

  • Nitu M, Montgomery G, Eigen H. Acid-base disorders. Pediatr Rev. 2011;32(6):240–51.

    PubMed  CrossRef  Google Scholar 

  • Noone D, Langlois V. Laboratory evaluation of renal disease in childhood. In: Geary DF, Schaefer F, editors. Pediatric kidney disease. Berlin, Heidelberg: Springer Berlin / Heidelberg; 2017. p. 77–105.

    Google Scholar 

  • Oh MS, Briefel G. Evaluation of renal function, water, electrolytes, and acid-base balance. In: Henry’s clinical diagnosis and management by laboratory methods [internet], vol. 23. St. Louis, Missouri: Elsevier; 2017. p. 162–87.e5.

    Google Scholar 

  • Panteghini M, IFCC Scientific Division. Enzymatic assays for creatinine: time for action. Clin Chem Lab Med. 2008;46(4):567–72.

    CAS  PubMed  Google Scholar 

  • Park SJ, Shin JI. Complications of nephrotic syndrome. Korean J Pediatr. 2011;54(8):322–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Parker JL, Kirmiz S, Noyes SL, Davis AT, Babitz SK, Alter D, et al. Reliability of urinalysis for identification of proteinuria is reduced in the presence of other abnormalities including high specific gravity and hematuria. Urol Oncol Semin Original Invest. 2020;38(11):853.e9–.e15.

    Google Scholar 

  • Pasala S, Carmody JB. How to use serum creatinine, cystatin C and GFR. Arch Dis Child Educ Pract Ed. 2017;102(1):37–43.

    PubMed  CrossRef  Google Scholar 

  • Pincus MR, Bock JL, Rossi R, Cai D. Chemical basis of analyte assays and common interferences. In: McPherson RA, Pincus MR, editors. Henry’s clinical diagnosis and management by laboratory methods. St. Louis, Missouri: Elsevier; 2017. p. 428–40.e1.

    Google Scholar 

  • Plumb LA, Oni L, Marks SD, Tullus K. Paediatric anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis: an update on renal management. Pediatr Nephrol. 2018;33(1):25–39.

    PubMed  CrossRef  Google Scholar 

  • Pomeranz AJ, Sabnis S, Busey SL, Kliegman RM. Edema. In: Pomeranz AJ, editor. Pediatric decision-making strategies. Philadelphia, PA: Elsevier-Saunders; 2016a. p. 126–9.

    Google Scholar 

  • Pomeranz AJ, Sabnis S, Busey SL, Kliegman RM. Proteinuria. In: Pomeranz AJ, editor. Pediatric decision-making strategies. Philadelphia, PA: Elsevier/Saunders; 2016b. p. 124–5.

    Google Scholar 

  • Pomeranz AJ, Sabnis S, Busey SL, Kliegman RM. Red urine and hematuria. In: Pomeranz AJ, editor. Pediatric decision-making strategies. Philadelphia, PA: Elsevier/Saunders; 2016c. p. 120–3.

    Google Scholar 

  • Poowuttikul P, Thomas R, Hart B, Secord E. Vitamin D insufficiency/deficiency in HIV-infected inner-city youth. J Int Assoc Providers AIDS Care (JIAPAC). 2013;13(5):438–42.

    CrossRef  Google Scholar 

  • Primack W. AAP does not recommend routine urinalysis for asymptomatic youths. AAP News. 2010;31(12):16.

    Google Scholar 

  • Quigley R. Evaluation of hematuria and proteinuria: how should a pediatrician proceed? Curr Opin Pediatr. 2008;20(2):140–4.

    PubMed  CrossRef  Google Scholar 

  • Quigley R. Developmental changes in renal function. Curr Opin Pediatr. 2012;24(2):184–90.

    PubMed  CrossRef  Google Scholar 

  • Ranch D. Proteinuria in children. Pediatr Ann. 2020;49(6):e268–e72.

    PubMed  CrossRef  Google Scholar 

  • Robinson JL, Venner AA, Seiden-Long I. Urine protein detection by dipstick: no interference from alkalinity or specific gravity. Clin Biochem. 2019;71:77–80.

    CAS  PubMed  CrossRef  Google Scholar 

  • Santos F, Gil-Pena H, Alvarez-Alvarez S. Renal tubular acidosis. Curr Opin Pediatr. 2017;29(2):206–10.

    CAS  PubMed  CrossRef  Google Scholar 

  • Santos F, Ordonez FA, Claramunt-Taberner D, Gil-Pena H. Clinical and laboratory approaches in the diagnosis of renal tubular acidosis. Pediatr Nephrol. 2015;30:2099–107.

    PubMed  CrossRef  Google Scholar 

  • Schlager TA. Urinary tract infections in infants and children. Microbiol Spectr. 2016;4:5.

    CrossRef  Google Scholar 

  • Schmidt B, Copp HL. Work-up of Pediatric urinary tract infection. Urol Clin North Am. 2015;42(4):519–26.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schwartz JB, Gallagher JC, Jorde R, Berg V, Walsh J, Eastell R, et al. Determination of free 25(OH)D concentrations and their relationships to total 25(OH)D in multiple clinical populations. J Clin Endocrinol Metab. 2018;103(9):3278–88.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shaoul R, Okev N, Tamir A, Lanir A, Jaffe M. Value of laboratory studies in assessment of dehydration in children. Ann Clin Biochem. 2004;41(Pt 3):192–6.

    CAS  PubMed  CrossRef  Google Scholar 

  • Sharma S, Gupta A, Saxena S. Comprehensive clinical approach to renal tubular acidosis. Clin Exp Nephrol. 2015;19(4):556–61.

    PubMed  CrossRef  Google Scholar 

  • Signorelli GC, Bianchetti MG, Jermini LMM, Agostoni C, Milani GP, Simonetti GD, Lava SAG. Dietary chloride deficiency syndrome: pathophysiology, history, and systematic literature review. Nutrients. 2020;12(11):3436–46.

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Simerville JA, Maxted WC, Pahira JJ. Urinalysis: a comprehensive review. Am Fam Physician. 2005;71(6):1153–62.

    PubMed  Google Scholar 

  • Simões E Silva AC, Oliveira EA, Mak RH. Urinary tract infection in pediatrics: an overview. J Pediatr. 2020;96(Suppl 1):65–79.

    CrossRef  Google Scholar 

  • Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25(11):2321–6.

    PubMed  CrossRef  Google Scholar 

  • Stenson EK, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald JC, Checchia PA, Meyer K, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Raj SS, Gertz S, Grunwell JR, Wong HR. Hyperchloremia is associated with complicated course and mortality in pediatric patients with septic shock. Pediatr Crit Care Med. 2018;19(2):155–60.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Subcommittee On Urinary Tract Infection. Reaffirmation of AAP clinical practice guideline: the diagnosis and management of the initial urinary tract infection in febrile infants and young children 2-24 months of age. Pediatrics. 2016;138(6):e20163026.

    CrossRef  Google Scholar 

  • Taib F, Jamal B. Diagnostic accuracy on the management of acute paediatric urinary tract infection in a general paediatric unit. J Acute Dis. 2015;4(1):54–8.

    CrossRef  Google Scholar 

  • Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis. 2015;65(1):156–68.

    PubMed  CrossRef  Google Scholar 

  • Touma E, Bisharat N. Trends in admission serum albumin and mortality in patients with hospital readmission. Int J Clin Pract. 2019;73(6):e13314.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tutay GJ, Capraro G, Spirko B, Garb J, Smithline H. Electrolyte profile of pediatric patients with hypertrophic pyloric stenosis. Pediatr Emerg Care. 2013;29(4):465–8.

    PubMed  CrossRef  Google Scholar 

  • Utsch B, Klaus G. Urinalysis in children and adolescents. Dtsch Arztebl Int. 2014;111(37):617–25. quiz 26

    PubMed  PubMed Central  Google Scholar 

  • Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int. 2016;90(1):41–52.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Verliat-Guinaud J, Blanc P, Garnier F, Gajdos V, Guigonis V. A midstream urine collector is not a good alternative to a sterile collection method during the diagnosis of urinary tract infection. Acta Paediatr. 2015;104(9):e395–400.

    CAS  PubMed  CrossRef  Google Scholar 

  • Vitale DS, Hornung L, Lin TK, Nathan JD, Prasad S, Thompson T, et al. Blood urea nitrogen elevation is a marker for pediatric severe acute pancreatitis. Pancreas. 2019;48(3):363–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Viteri B, Reid-Adam J. Hematuria and proteinuria in children. Pediatr Rev. 2018;39(12):573–87.

    PubMed  CrossRef  Google Scholar 

  • Wang C-s, Greenbaum LA. Nephrotic syndrome. Pediatr Clin N Am. 2019;66(1):73–85.

    CAS  CrossRef  Google Scholar 

  • Weng FL, Shults J, Herskovitz RM, Zemel BS, Leonard MB. Vitamin D insufficiency in steroid-sensitive nephrotic syndrome in remission. Pediatr Nephrol. 2005;20(1):56–63.

    PubMed  CrossRef  Google Scholar 

  • Yates M, Watts R. ANCA-associated vasculitis. Clin Med (Lond). 2017;17(1):60–4.

    CrossRef  Google Scholar 

  • Yaxley J, Pirrone C. Review of the diagnostic evaluation of renal tubular acidosis. Ochsner J. 2016;16(4):525–30.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Schneider, D., McKegney, C.C. (2022). Care of the Child with a Renal Problem. In: John, R.M. (eds) Pediatric Diagnostic Labs for Primary Care: An Evidence-based Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-90642-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90642-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90641-2

  • Online ISBN: 978-3-030-90642-9

  • eBook Packages: MedicineMedicine (R0)