Skip to main content

Automated Generation of Initial Configurations for Testing Component Systems

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13077))

Included in the following conference series:

Abstract

In the context of component-based systems, this paper presents the automated generation of initial states, from which an adaptive system starts to receive sequences of events that aim to provoke reconfigurations. For generating these states, also called configurations, we present a combinatorial algorithm supporting various architectural elements and relationships among them, while satisfying consistency constraints expressed by invariants. Moreover, this algorithm deals with the system-dependant instantiations of the primitive and composite components, parameters and relations, in order to produce meaningful structured configurations. While testing adaptation policies for component-based systems, this algorithm allows us to improve the capability of fulfilling coverage criteria by using different initial configurations. To illustrate the approach, the paper reports on experiments on a simulation with platoons of autonomous vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Each component type is mapped to a set of component types, as we assume that components can be shared by composite components.

  2. 2.

    The interested reader can find an implementation of this algorithm at https://fdadeau.github.io/CSConfigGen/.

  3. 3.

    In this matrix \(a_{i,i}=0\) and \(a_{i,j}=a_{j,i}\). The complexity of the computation is quadratic in the number m of configurations.

  4. 4.

    More results are in Table at https://fdadeau.github.io/CSConfigGen/table.html.

  5. 5.

    Let us note that for each experiment, on the given clock tick, on average \(10\%\) of steps correspond to the events from the usage models sent to the SUT (cf. (4) in Fig. 1), whereas \(\delta \) occurs for the remaining \(90\%\) of steps.

References

  1. Alkan, B., Harrison, R.: A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. J. Manuf. Syst. 53, 18–31 (2019)

    Article  Google Scholar 

  2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods, SEFM 2006, Washington, DC, USA, pp. 3–12. IEEE Computer Society (2006)

    Google Scholar 

  3. Beizer, B., Wiley, J.: Black box testing: techniques for functional testing of software and systems. IEEE Softw. 13(5), 98 (1996). https://doi.org/10.1109/MS.1996.536464

  4. Bergenhem, C.: Approaches for facilities layer protocols for platooning. In: IEEE 18th International Conference on Intelligent Transportation Systems, ITSC 2015, pp. 1989–1994. IEEE (2015). https://doi.org/10.1109/ITSC.2015.322

  5. Bouquet, F., Legeard, B., Peureux, F.: CLPS-B - A constraint solver to animate a B specification. Int. J. Softw. Tools Technol. Transf. 6(2), 143–157 (2004). https://doi.org/10.1007/s10009-003-0123-8

  6. Chauvel, F., Barais, O., Borne, I., Jézéquel, J.: Composition of qualitative adaptation policies. In: 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), pp. 455–458. IEEE Computer Society (2008)

    Google Scholar 

  7. Dadeau, F., Gros, J.P., Kouchnarenko, O.: Testing adaptation policies for software components. Softw. Qual. J. 28(3), 1347–1378 (2020). https://doi.org/10.1007/s11219-019-09487-w

  8. Dadeau, F., Gros, J.P., Kouchnarenko, O.: Online testing of dynamic reconfigurations w.r.t. adaptation policies. Model. Anal. Inf. Syst. 28(1), 52–73 (2021). https://doi.org/10.18255/1818-1015-2021-1-52-73. (in Russian)

  9. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic reconfigurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 200–217. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27269-1_12

    Chapter  MATH  Google Scholar 

  10. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. Int. J. Softw. Tools Technol. Transf. (2021). https://doi.org/10.1007/s10009-020-00596-7

  11. Galeotti, J.P., Rosner, N., López Pombo, C.G., Frias, M.F.: TACO: efficient sat-based bounded verification using symmetry breaking and tight bounds. IEEE Trans. Softw. Eng. 39(9), 1283–1307 (2013). https://doi.org/10.1109/TSE.2013.15

  12. Gupta, A., Nadarajah, S.: Handbook of Beta Distribution and Its Applications. CRC Press (2004)

    Google Scholar 

  13. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. JSTOR Appl. Stat. 28(1), 100–108 (1979)

    Google Scholar 

  14. Hussain, A., Tiwari, S., Suryadevara, J., Enoiu, E.: From modeling to test case generation in the industrial embedded system domain. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 499–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_35

    Chapter  Google Scholar 

  15. Jin, H., Kitamura, T., Choi, E.-H., Tsuchiya, T.: A comparative study on combinatorial and random testing for highly configurable systems. In: Casola, V., De Benedictis, A., Rak, M. (eds.) ICTSS 2020. LNCS, vol. 12543, pp. 302–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64881-7_20

    Chapter  Google Scholar 

  16. Kitamura, T., Do, N.T.B., Ohsaki, H., Fang, L., Yatabe, S.: Test-case design by feature trees. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 458–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_34

    Chapter  Google Scholar 

  17. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2123–2138 (2018)

    Google Scholar 

  18. Kouchnarenko, O., Weber, J.-F.: Adapting component-based systems at runtime via policies with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 234–253. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_15

    Chapter  Google Scholar 

  19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    Google Scholar 

  20. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking to validate reconfigurable architectures. Electron. Notes Theor. Comput. Sci. 279(2), 43–57 (2011). https://doi.org/10.1016/j.entcs.2011.11.011

  21. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7_2

    Chapter  MATH  Google Scholar 

  22. Sullivan, K., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance by bounded exhaustive testing. In: Proceedings of the International Symposium on Software Testing and Analysis (ISSTA 2004), pp. 133–142. Association for Computing Machinery, New York (2004)

    Google Scholar 

  23. Taha, S., Julliand, J., Dadeau, F., Cabrera Castillos, K., Kanso, B.: A compositional automata-based semantics and preserving transformation rules for testing property patterns. Formal Aspects Comput. 27(4), 641–664 (2015). https://doi.org/10.1007/s00165-014-0328-5

  24. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.1002/stvr.456

  25. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical testing of software based on a usage model. Softw. Pract. Exp. 25(1), 97–108 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dadeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dadeau, F., Gros, JP., Kouchnarenko, O. (2021). Automated Generation of Initial Configurations for Testing Component Systems. In: Salaün, G., Wijs, A. (eds) Formal Aspects of Component Software. FACS 2021. Lecture Notes in Computer Science(), vol 13077. Springer, Cham. https://doi.org/10.1007/978-3-030-90636-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90636-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90635-1

  • Online ISBN: 978-3-030-90636-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics