Skip to main content

Geostatistical Analysis of Geothermal Flow in Morocco

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) (AI2SD 2020)

Abstract

The geostatistical analysis of the spatial relationships between geothermal events and geophysical and geological phenomena in the Northern and central provinces of Morocco, using the Multiple Linear Regression Method, made it possible to develop a numerical model for predicting geothermal flows. Thus, the computer calculation in the QGIS 12.04 geographical information system of digital data measurements: geological (Neogene and Quaternary volcanism, fracturing), geophysical (gravimetry, magnetism), seismic and geothermal manifestations, has led to the creation of a “Geothermal Flow Prediction” in Morocco.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jallouli, C., Mickus, K.: Regional gravity analysis of the crustal structure of Tunisia. J. Afr. Earth Sci. 30, 63–78 (2000). https://doi.org/10.1016/S0899-5362(00)00008-7

    Article  Google Scholar 

  2. Lefort, J.P., Agarwal, B.N.P.: Gravity and geomorphological evidence for a large crustal bulge cutting across Brittany (France): a tectonic response to the closure of the Bay of Biscay. Tectonophysics 323, 149–162 (2000). https://doi.org/10.1016/S0040-1951(00)00103-7

    Article  Google Scholar 

  3. Ouzzaouit, L.A., et al.: Recent warming trends inferred from borehole temperature data in Figuig area (Eastern Morocco). J. Afr. Earth Sci. 96, 1–7 (2014). https://doi.org/10.1016/j.jafrearsci.2014.03.002

    Article  Google Scholar 

  4. Rimi, A.: Carte du gradient géothermique au Maroc. Bull. L’Institut Sci. 23, 1–6 (2001)

    Google Scholar 

  5. Rimi, A., Lucazeau, F.: Heat flow density measurements in northern Morocco. J. Afr. Earth Sci. 6, 835–843 (1987). https://doi.org/10.1016/0899-5362(87)90041-8

    Article  Google Scholar 

  6. Zarhloule, Y.: Le gradient géothermique profond du Maroc: détermination et cartographie. Bull. Inst. 26, 11–25 (2004)

    Google Scholar 

  7. Bahi, L., El Yamine, N., Risler, J.J.: Linéaments géothermiques au Maroc. CR Acad. Sci. Paris 296, 1087–1092 (1983)

    Google Scholar 

  8. Boukdir, A.: Contribution à l’étude géothermique du bassin du Tadla, plateau des phosphates et Tassaout aval. Application au réservoir calcaire du turonien (crétacé) (1994)

    Google Scholar 

  9. Cidu, R., Bahaj, S.: Geochemistry of thermal waters from Morocco. Geothermics 29, 407–430 (2000). https://doi.org/10.1016/S0375-6505(00)00007-9

    Article  Google Scholar 

  10. Lahrach, A.: Potentialités hydrogéothermiques du Maroc oriental (1994)

    Google Scholar 

  11. Rimi, A.: First assessment of geothermal resources in Morocco. In: Proceedings of the World Geothermal Congress, Japan, pp. 397–402 (2000)

    Google Scholar 

  12. Ziyadi, R.: Géologie appliquée à l’étude de l’environnement géothermique de la région de Nador (1993)

    Google Scholar 

  13. Rimi, A., et al.: Geothermal anomalies and analysis of gravity, fracturing and magnetic features in Morocco. In: Proceedings of the World Geothermal Congress, Turkey (2005)

    Google Scholar 

  14. Rimi, A., Chalouan, A., Bahi, L.: Heat flow in the westernmost part of the Alpine Mediterranean system (the Rif, Morocco). Tectonophysics 285, 135–146 (1998). https://doi.org/10.1016/S0040-1951(97)00185-6

    Article  Google Scholar 

  15. Davies, J.H.: Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst. 14, 4608–4622 (2013). https://doi.org/10.1002/ggge.20271

    Article  Google Scholar 

  16. Damiani, T.M., Jordan, T.A., Ferraccioli, F., Young, D.A., Blankenship, D.D.: Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica. Earth Planet. Sci. Lett. 407, 109–122 (2014). https://doi.org/10.1016/j.epsl.2014.09.023

    Article  Google Scholar 

  17. Fullea, J., Fernàndez, M., Zeyen, H., Vergés, J.: A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics 430(1–4), 97–117 (2007). https://doi.org/10.1016/j.tecto.2006.11.003

    Article  Google Scholar 

  18. Root, B.C., Ebbing, J., Wal, W., England, R.W., Vermeersen, L.L.A.: Comparing gravity-based to seismic-derived lithosphere densities: a case study of the British Isles and surrounding areas. Geophys. J. Int. 208, 1796–1810 (2016). https://doi.org/10.1093/gji/ggw483

    Article  Google Scholar 

  19. Torne, M., Fernandez, M., Comas, M.C., Soto, J.I.: Lithospheric structure beneath the Alboran Basin: results from 3D gravity modeling and tectonic relevance. J. Geophys. Res. Solid Earth. 105, 3209–3228 (2000). https://doi.org/10.1029/1999jb900281

    Article  Google Scholar 

  20. Zeyen, H., Fernàndez, M.: Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: application to the NE Spanish Geotransect. J. Geophys. Res. Solid Earth. 99, 18089–18102 (1994). https://doi.org/10.1029/94jb00898

    Article  Google Scholar 

  21. An, M., et al.: Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res. Solid Earth. 120, 8720–8742 (2015). https://doi.org/10.1002/2015jb011917

    Article  Google Scholar 

  22. Börner, J.H., Bär, M., Spitzer, K.: Electromagnetic methods for exploration and monitoring of enhanced geothermal systems–a virtual experiment. Geothermics 55, 78–87 (2015). https://doi.org/10.1016/j.geothermics.2015.01.011

    Article  Google Scholar 

  23. Elbarbary, S., Zaher, M.A., Mesbah, H., El-Shahat, A., Embaby, A.: Curie point depth, heat flow and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renew. Sustain. Energy Rev. 91, 620–629 (2018). https://doi.org/10.1016/j.rser.2018.04.071

    Article  Google Scholar 

  24. Martos, Y.M., et al.: Heat flux distribution of Antarctica unveiled. Geophys. Res. Lett. 44, 11–417 (2017). https://doi.org/10.1002/2017GL075609

    Article  Google Scholar 

  25. Martos, Y.M., Jordan, T.A., Catalán, M., Jordan, T.M., Bamber, J.L., Vaughan, D.G.: Geothermal heat flux reveals the Iceland hotspot track underneath Greenland. Geophys. Res. Lett. 45, 8214–8222 (2018). https://doi.org/10.1029/2018gl078289

    Article  Google Scholar 

  26. Maule, C.F., Purucker, M.E., Olsen, N., Mosegaard, K.: Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467 (2005). https://doi.org/10.1126/science.1106888

    Article  Google Scholar 

  27. Shapiro, N.M., Ritzwoller, M.H.: Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett. 223, 213–224 (2004). https://doi.org/10.1016/j.epsl.2004.04.011

    Article  Google Scholar 

  28. Baykiev, E., Guerri, M., Fullea, J.: Integrating gravity and surface elevation with magnetic data: mapping the Curie temperature beneath the British Isles and surrounding areas. Front. Earth Sci. 6, 165 (2018). https://doi.org/10.3389/feart.2018.00165

    Article  Google Scholar 

  29. Rybach, L., Buntebarth, G.: Relationships between the petrophysical properties density, seismic velocity, heat generation, and mineralogical constitution. Earth Planet. Sci. Lett. 57, 367–376 (1982). https://doi.org/10.1016/0012-821x(82)90157-1

    Article  Google Scholar 

  30. Schärli, U., Rybach, L.: Determination of specific heat capacity on rock fragments. Geothermics 30, 93–110 (2001). https://doi.org/10.1016/s0375-6505(00)00035-3

    Article  Google Scholar 

  31. Spichak, V., Manzella, A.: Electromagnetic sounding of geothermal zones. J. Appl. Geophys. 68, 459–478 (2009). https://doi.org/10.1016/j.jappgeo.2008.05.007

    Article  Google Scholar 

  32. Hojat, A., Fox Maule, C., Hemant Singh, K.: Reconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations. J. Earth Space Phys. 41, 95–104 (2016)

    Google Scholar 

  33. Rimi, A., Zeyen, H., Zarhloule, Y., Correia, A., Carneiro, J., Cherkaoui, T.-E.: Structure thermique de la lithosphère à travers la limite des plaques Ibérie-Afrique par modélisation intégrée du flux de chaleur. In: de la densité et de la topographie le long d’un transect NS à 3. Ouest (2008)

    Google Scholar 

  34. Siler, D.L., Faulds, J.E., Hinz, N.H., Dering, G.M., Edwards, J.H., Mayhew, B.: Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon. Geoth. Energy 7(1), 1–32 (2019). https://doi.org/10.1186/s40517-018-0117-0

    Article  Google Scholar 

  35. Wang, Y., Pang, Z., Hao, Y., Fan, Y., Tian, J., Li, J.: A revised method for heat flux measurement with applications to the fracture-controlled Kangding geothermal system in the Eastern Himalayan Syntaxis. Geothermics 77, 188–203 (2019). https://doi.org/10.1016/j.geothermics.2018.09.005

    Article  Google Scholar 

  36. Pollack, H.N., Hurter, S.J., Johnson, J.R.: Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993). https://doi.org/10.1029/93RG01249

    Article  Google Scholar 

  37. Hanano, M.: Two different roles of fractures in geothermal development. In: Proceedings of the World Geothermal Congress, pp. 2597–2602 (2000)

    Google Scholar 

  38. Noorollahi, Y., Itoi, R., Fujii, H., Tanaka, T.: GIS model for geothermal resource exploration in Akita and Iwate prefectures, Northern Japan. Comput. Geosci. 33, 1008–1021 (2007). https://doi.org/10.1016/j.cageo.2006.11.006

    Article  Google Scholar 

  39. McLellan, J.G., Oliver, N.H.S., Hobbs, B.E., Rowland, J.V.: Modelling fluid convection stability in continental faulted rifts with applications to the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 190, 109–122 (2010). https://doi.org/10.1016/j.jvolgeores.2009.11.015

    Article  Google Scholar 

  40. Person, M., et al.: Analytical and numerical models of hydrothermal fluid flow at fault intersections. Geofluids 12, 312–326 (2012). https://doi.org/10.1111/gfl.12002

    Article  Google Scholar 

  41. Cui, T., Yang, J., Samson, I.M.: Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. J. Geochem. Explor. 106, 69–76 (2010). https://doi.org/10.1016/j.gexplo.2009.12.008

    Article  Google Scholar 

  42. Raffensperger, J.P., Garven, G.: The formation of unconformity-type uranium ore deposits; 1, coupled groundwater flow and heat transport modeling. Am. J. Sci. 295, 581–636 (1995). https://doi.org/10.2475/ajs.295.5.581

    Article  Google Scholar 

  43. Braun, J., Munroe, S.M., Cox, S.F.: Transient fluid flow in and around a fault. Geofluids 3(2), 81–87 (2003). https://doi.org/10.1046/j.1468-8123.2003.00051.x

    Article  Google Scholar 

  44. Harcouët-Menou, V., Guillou-Frottier, L., Bonneville, A., Adler, P.M., Mourzenco, V.: Hydrothermal convection in and around mineralized fault zones: insights from two-and three-dimensional numerical modeling applied to the Ashanti belt, Ghana. Geofluids 9, 116–137 (2009). https://doi.org/10.1111/j.1468-8123.2009.00247.x

    Article  Google Scholar 

  45. López, D.L., Smith, L.: Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour. Res. 31, 1489–1503 (1995). https://doi.org/10.1029/95wr00422

    Article  Google Scholar 

  46. Souche, A., Dabrowski, M., Andersen, T.B.: Modeling thermal convection in supradetachment basins: example from Western Norway. Geofluids 14, 58–74 (2014)

    Article  Google Scholar 

  47. Burg, J.-P., Gerya, T.V.: The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorph. Geol. 23, 75–95 (2005). https://doi.org/10.1111/j.1525-1314.2005.00563.x

    Article  Google Scholar 

  48. Davy, P., Gillet, P.: The stacking of thrust slices in collision zones and its thermal consequences. Tectonics 5, 913–929 (1986). https://doi.org/10.1029/TC005i006p00913

    Article  Google Scholar 

  49. England, P.C., Richardson, S.W.: The influence of erosion upon the mineral fades of rocks from different metamorphic environments. J. Geol. Soc. 134, 201–213 (1977). https://doi.org/10.1144/gsjgs.134.2.0201

    Article  Google Scholar 

  50. England, P.C., Thompson, A.B.: Pressure—temperature—time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol. 25, 894–928 (1984). https://doi.org/10.1093/petrology/25.4.894

  51. Harcouët, V., Guillou-Frottier, L., Bonneville, A., Bouchot, V., Milesi, J.-P.: Geological and thermal conditions before the major Palaeoproterozoic gold-mineralization event at Ashanti, Ghana, as inferred from improved thermal modelling. Precambr. Res. 154, 71–87 (2007). https://doi.org/10.1016/j.precamres.2006.11.014

    Article  Google Scholar 

  52. Huerta, A.D., Royden, L.H., Hodges, K.V.: The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. J. Geophys. Res. Solid Earth. 103, 15287–15302 (1998). https://doi.org/10.1029/98jb00593

    Article  Google Scholar 

  53. Huerta, A.D., Royden, L.H., Hodges, K.V.: The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J. Metamorph. Geol. 17, 349–366 (1999). https://doi.org/10.1046/j.1525-1314.1999.00204.x

    Article  Google Scholar 

  54. Husson, L., Moretti, I.: Thermal regime of fold and thrust belts—an application to the Bolivian sub Andean zone. Tectonophysics 345, 253–280 (2002). https://doi.org/10.1016/s0040-1951(01)00216-5

    Article  Google Scholar 

  55. Jaupart, C., Provost, A.: Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones. Earth Planet. Sci. Lett. 73, 385–397 (1985). https://doi.org/10.1016/0012-821x(85)90086-x

    Article  Google Scholar 

  56. Maden, N.: One-dimensional thermal modeling of the Eastern Pontides Orogenic Belt (NE Turkey). Pure Appl. Geophys. 169, 235–248 (2012). https://doi.org/10.1007/s00024-011-0296-0

    Article  Google Scholar 

  57. Ruppel, C., Hodges, K.V.: Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde, and inverted metamorphism. Tectonics 13, 17–44 (1994). https://doi.org/10.1029/93tc01824

    Article  Google Scholar 

  58. Thompson, A.B., Connolly, J.A.: Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res. Solid Earth. 100, 15565–15579 (1995). https://doi.org/10.1029/95jb00191

    Article  Google Scholar 

  59. Vanderhaeghe, O., Medvedev, S., Fullsack, P., Beaumont, C., Jamieson, R.A.: Evolution of orogenic wedges and continental plateaux: insights from crustal thermal–mechanical models overlying subducting mantle lithosphere. Geophys. J. Int. 153, 27–51 (2003). https://doi.org/10.1046/j.1365-246x.2003.01861.x

    Article  Google Scholar 

  60. Falissard, B.: Comprendre et utiliser les statistiques dans les sciences de la vie (2019)

    Google Scholar 

  61. Amini, M., Abbaspour, K.C., Johnson, C.A.: A comparison of different rule-based statistical models for modeling geogenic groundwater contamination. Environ. Model. Softw. 25, 1650–1657 (2010). https://doi.org/10.1016/j.envsoft.2010.05.014

    Article  Google Scholar 

  62. Gillaizeau, F., Grabar, S.: Modèles de régression multiple. Sang Thromb. Vaiss. 23, 360–370 (2011). https://doi.org/10.1684/stv.2011.0632

    Article  Google Scholar 

  63. Goh, A.T.C., Zhang, W.G.: An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng. Geol. 170, 1–10 (2014). https://doi.org/10.1016/j.enggeo.2013.12.003

    Article  Google Scholar 

  64. Khanlari, G.R., Heidari, M., Momeni, A.A., Abdilor, Y.: Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Eng. Geol. 131–132, 11–18 (2012). https://doi.org/10.1016/j.enggeo.2011.12.006

    Article  Google Scholar 

  65. Vanié, L.T.A., Khattach, D., Houari, M.R.: Apport des filtrages des anomalies gravimétriques à l’étude des structures profondes du Maroc oriental. Bull. Inst. Sci. 27, 29–40 (2005)

    Google Scholar 

  66. Rimi, A.: Mantle heat flow and geotherms for the main geologic domains in Morocco. Int. J. Earth Sci. 88, 458–466 (1999)

    Article  Google Scholar 

  67. Ranalli, G., Rybach, L.: Heat flow, heat transfer and lithosphere rheology in geothermal areas: features and examples. J. Volcanol. Geotherm. Res. 148, 3–19 (2005). https://doi.org/10.1016/j.jvolgeores.2005.04.010

    Article  Google Scholar 

  68. Rimi, A., Lucazeau, F.: Heat flow density measurements in Northern Morocco. J. Afr. Earth Sci. 1983(6), 835–843 (1987)

    Google Scholar 

  69. Zarhloule, Y.: Le gradient géothermique profond du Maroc: détermination et cartographie. Bull. Inst. Sci. 26, 11–25 (2004)

    Google Scholar 

  70. Zarhloule, Y., et al.: La province géothermique du Maroc nord oriental. Rev. Énerg. Renouvelables CER 7, 89–94 (2007)

    Google Scholar 

  71. de Lis Mancilla, F., et al.: Crustal thickness variations in Northern Morocco. J. Geophys. Res. 117, B02312 (2012). https://doi.org/10.1029/2011JB008608

  72. Thurner, S., Palomeras, I., Levander, A., Carbonell, R., Lee, C.-T.: Ongoing lithospheric removal in the Western Mediterranean: evidence from Ps receiver functions and thermobarometry of Neogene basalts (PICASSO project). Geochem. Geophys. Geosyst. 15, 1113–1127 (2014)

    Article  Google Scholar 

  73. Fullea, J., Fernàndez, M., Zeyen, H., Vergés, J.: A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics 430(1–4), 97–117 (2007)

    Article  Google Scholar 

  74. Fullea, J., Fernàndez, M., Afonso, J.C., Vergés, J., Zeyen, H.: The structure and evolution of the lithosphere–asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region. Lithos 120, 74–95 (2010)

    Article  Google Scholar 

  75. Tadili, B., Ramdani, M., Ben Sari, D., Chapochnikov, K., Bellot, A.: Structure de la croûte dans le nord du Maroc. Annales Geophysicae. Ser. B Terr. Planet. Phys. 4, 99–104 (1986)

    Google Scholar 

Download references

Acknowledgment

This study was supported by the Scientific Institute, Rabat, Morocco. The Geophysics data provided by Moroccan Ministry of Mines and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalla Amina Ouzzaouit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouzzaouit, L.A., Qarbous, A., Bahi, L. (2022). Geostatistical Analysis of Geothermal Flow in Morocco. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020). AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1417. Springer, Cham. https://doi.org/10.1007/978-3-030-90633-7_44

Download citation

Publish with us

Policies and ethics