Skip to main content

Memristor-Based In-Memory Computing Architecture for Scientific Computing

  • Chapter
  • First Online:
Memristor Computing Systems

Abstract

Owing to their ability to demonstrate parallel multiplication and accumulation operations in a memristive crossbar array, memristors are well suited to in-memory analog computing architecture. In addition to neuromorphic computing that tolerates low computing precision and other non-ideal memristor characteristics, numerical analysis and scientific computing, which are widely used in many data-intensive scientific and engineering applications, require high-precision and accurate solutions and, thus, pose significant challenges for the memristive approach. In this chapter, we first briefly introduce the principle of vector–matrix multiplication operation in a memristor crossbar array. Second, the principles of memristor-based in-memory scientific computing accelerators are explained, focusing on solving systems of linear equations and partial differential equations. Accordingly, the key works in this field are reviewed. Finally, we scrutinize the challenges and opportunities at the device and system levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ielmini, H.-S. Philip Wong, In-memory Computing with Resistive Switching Devices. Nature Electronics. 1,333–343(2018)

    Google Scholar 

  2. Xia Q, Yang JJ (2019) Memristive Crossbar Array for Brain-inspired Computing. Nat Mater 18:309–323

    Article  Google Scholar 

  3. Wang Z, Wu H, Burr GW, Hwang CS, Wang KL, Xia Q, Yang JJ (2020) Resistive Switching Materials for Information Processing. Nat Rev Mater 5:173–195

    Article  Google Scholar 

  4. Bouwmans T, Javed S, Sultana M, Jung SK (2019) Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation. Neural Netw 117:8–66

    Article  Google Scholar 

  5. J. Liu, G. Wang, P. Hu, L. Y. Duan, A. C. Kot, Global Context-Aware Attention LSTM Networks for 3D Action Recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1647–1656(2017)

    Google Scholar 

  6. B. Chen, F. Cai, W. Ma, P. Sheridan, W. D. Lu, Efficient in-memory computing architecture based on crossbar arrays, in 2015 IEEE International Electron Devices Meeting (IEDM), IEEE, pp. 17.5.1–17.5.4 (2015).

    Google Scholar 

  7. L. Qi, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zang, Y. Liao, C. X. Xue, W. H. Chen, J. Tang, Y, Wang, M. F. Chang, Q. He, H. Wu, A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC Computing, in 2020 IEEE International Solid-State Circuits (ISSCC), IEEE, pp. 500–502 (2020)

    Google Scholar 

  8. Li C, Belkin D, Li Y, Wan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Song W, Strachan JP, Barnell M, Wu Q, Williams RS, Yang JJ, Xia Q (2018) Efficient and Self-adaptive In-situ Learning in Multilayer Memristor Neural Networks. Nat Commun 9:1–8

    Article  Google Scholar 

  9. Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W, Yang JJ, He Q (2020) Fully Hardware-implemented Memristor Convolutional Neural Network. Nature 577:641–646

    Article  Google Scholar 

  10. Jeong Y, Lee J, Moon J, Shin JH, Lu WD (2018) K-means Data Clustering with Memristor Networks. Nano Lett 18:4447–4453

    Article  Google Scholar 

  11. M. Hu, G. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S, Williams, J. J. Yang, Q. Xia, J. P. Strachan, Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine, Advanced Materials, 30(9), 1705914 (2018)

    Google Scholar 

  12. Liu M, Xia L, Wang Y, Chakrabarty K (2020) Algorithmic Fault Detection for RRAM-based Matrix Operations. ACM. Trans. Des. Auto. Electron. Syst. 25(3):31

    Google Scholar 

  13. M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, W. Tebbutt, A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, arXiv e-prints, page arXiv:1907.07587 (2019)

  14. Ivie P, Thain D (2018) Reproducibility in Scientific Computing. ACM Comput Surv 51(3):63

    Google Scholar 

  15. D. Weller, F. Oboril, D. Lukarski, J. Becker, M. Tahoori, Energy Efficient Scientific Computing on FPGAs using OpenCL, in international Symposium on Field-Programmable Gate Arrays, ACM, pp. 247–256 (2017)

    Google Scholar 

  16. Sebastian A, Gallo ML, Khaddam-Aljameh R, Eleftheriou E (2020) Memory devices and applications for in-memory computing. Nat Nanotechnol. https://doi.org/10.1038/s41565-020-0655-z

    Article  Google Scholar 

  17. Golub GH, Loan CFV (2013) Matrix Computations, 4th edn. The Johns Hopkins University, Maryland

    MATH  Google Scholar 

  18. J. H. Shin, Y. J. Jeong, M. A. Zidan, Q. Wang, W. D. Lu, Hardware Acceleration of Simulated Annealing of Spin Glass by RRAM Crossbar Array, 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, pp. 3.3.1–3.3.4 (2018)

    Google Scholar 

  19. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stracnan, M. Hu, R. S. Williams, V. Srikumar, in 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture, IEEE, pp. 14–26 (2016)

    Google Scholar 

  20. Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Davila N, Graves CE, Li Z, Strachan JP, Lin P, Wang Z, Barnell M, Wu Q, Williams RS, Yang JJ, Xia Q (2018) Analogue signal and image processing with large memristor crossbars. Nature Electronics 1:52–59

    Article  Google Scholar 

  21. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu WD (2010) Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett 10(4):1297–1301

    Article  Google Scholar 

  22. Eryilmaz SB, Kuzum D, Jeyasingh R, Kim SB, BrightSky M, Lam C, Wong HSP (2014) Brain-like Associative Learning Using a Nanoscale Non-volatile Phase Change Synaptic Device Array. Frontiers in Neuroence 8(8):205–205

    Google Scholar 

  23. Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A, Matsumoto R, Kubota H (2016) Shinji Yuasa. J. Grollier, A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy, Scientific Report 6:1–7

    Google Scholar 

  24. Ni K, Yin X, Laguna AF, Joshi S, Dünkel S, Trentzsch M, Müller J, Beyer S, Niemier M, Hu XS, Datta S (2019) Ferroelectric ternary content-addressable memory for one-shot learning. Nature Electronics 2:521–529

    Article  Google Scholar 

  25. Y. C. Yang, P. Huang, Z. Zhou, R. Z. Han, Y. N. Jiang, Q. M. Shu, Z. Q. Su, Y. B. Liu, X. Y. Liu, J. F. Kang, Analog Deep Neural Network Based on NOR Flash Computing Array for High Speed/Energy Efficiency Computation, in 2019 IEEE International Symposium on Circuit and System (ISCAS), IEEE, pp.1–4 (2019)

    Google Scholar 

  26. J. Wang, N. Elia, Distributed solution of linear equations over unreliable networks, in 2016 American Control Conference, IEEE, pp. 6471–6476 (2016)

    Google Scholar 

  27. Jeffery A (2010) Matrix Operation for Engineers and Scientists. Springer, London

    Book  Google Scholar 

  28. Allaire G, Kaber SM (2008) Numerical Linear Algebra. Springer, New York

    Book  Google Scholar 

  29. Greenbaum A (1997) Iterative Methods for Solving Linear Systems. University of Washington, Seattle

    Book  Google Scholar 

  30. Wang Y, Li Y, Shen H, Fan D, Wang W, Li L, Liu Q, Zhang F, Wang X, Chang MF, Liu M (2019) A Few-Step and Low-Cost Memristor Logic Based on MIG Logic for Frequent-Off Instant-On Circuits in IoT Applications. IEEE Transactions on Circuit and Systems 66(4):662–666

    Google Scholar 

  31. Sun Z, Pedretti G, Ambrosi E, Bricalli A, Wang W, Ielmini D (2019) Solving matrix equations in one step with cross-point resistive arrays. PNAS 116(10):4123–4128

    Article  MathSciNet  Google Scholar 

  32. Z. Sun, G. Pedretti, D. Ielmini, Fast solution of linear systems with analog resistive switching memory (RRAM), in 2019 IEEE International Conference on Rebooting Computing (ICRC), IEEE, pp.1–5 (2019)

    Google Scholar 

  33. Sun Z, Pedretti G, Mannocci P, Ambrosi E, Bricalli A, Ielmini D (2020) Time complexity of in-memory solution of linear systems. IEEE Transactions on Electronic Device 67(7):2945–2951

    Article  Google Scholar 

  34. Sun Z, Pedretti G, Ambrosi E, Bricalli A, Ielmini D (2020) In-Memory Eigenvector Computation in Time O(1). Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202000042

    Article  MATH  Google Scholar 

  35. Sun Z, Ambrosi E, Pedretti G, Bricalli A, Ielmini D (2020) In-Memory PageRank Accelerator With a Cross-Point Array of Resistive Memories. IEEE Transactions on Electronic Device 67(4):1466–1470

    Article  Google Scholar 

  36. N. P. Jouppi, C. Young, N. Patil, D. Patterson, C. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, In-Datacenter Performance Analysis of a Tensor Processing Unit, in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA), pp.1–12 (2017)

    Google Scholar 

  37. Z. Sun, G. Pedretti, A. Bricalli, D. Ielmini, One-step Regression and Classification with Cross-point Resistive Memory Arrays, Science Advance, 6 (2020), https://doi.org/10.1126/sciadv.aay2378

  38. Gallo ML, Sebastian A, Mathis R, Manica M, Giefers H, Tuma T, Bekas G, Curioni A, Eleftheriou E (2018) Mixed-precision in-memory computing. Nature Electronics 1:246–253

    Article  Google Scholar 

  39. John F (1982) Partial Differential Equations, 4th edn. Springer, New York

    Book  Google Scholar 

  40. Zhou P (1993) Numerical Analysis of Electromagnetic Fields. Springer, Berlin

    Book  Google Scholar 

  41. Kreiss HO, Busenhart HU (2001) Time-dependent Partial Differential Equations and Their Numerical Solution. Springer, Basel

    Book  Google Scholar 

  42. Pareschi L, Russo G (2000) implicit–Explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends in Numerical Analysis 3:269–289

    MathSciNet  MATH  Google Scholar 

  43. Zidan MA, Jeong Y, Lee J, Chen B, Huang S, Kushner MJ, Lu WD (2018) A general memristor-based partial differential equation solver. Nature Electronics 1:411–420

    Article  Google Scholar 

  44. S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. d. Nolfo, S. Sidler, M. Giordano, M. Bodini. N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    Google Scholar 

  45. A. Elafrou, G. Goumas & N. Koziris, Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi-and Many-Core Processors. International Conference on Parallel Processing (ICPP), 292–301 (2017).

    Google Scholar 

  46. Berdan R, Marukame T, Ota K, Yamaguchi M, Saitoh M, Fujii S, Deguchi J, Nishi Y (2020) Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nature Electronics 3:259–266

    Article  Google Scholar 

  47. Y. Feng, X. Zhan, J. Chen, Flash Memory based Computing-In-Memory to Solve Time-dependent Partial Differential Equations, in 2020 IEEE Silicon Nanoelectronics Workshop (SNW), pp. 27–28 (2020)

    Google Scholar 

  48. H. Zhou, Y. Zhao, G. Xu, X. Wang, Z. Tan, J. Dong, X. Zhang, Chip-Scale Optical Matrix Computation for PageRank Algorithm, IEEE Journal of selected Topics in Quantum Electronics, 26(2) (2020), https://doi.org/10.1109/JSTQE.2019.2943347

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Li, Y., Yang, L., Miao, X. (2022). Memristor-Based In-Memory Computing Architecture for Scientific Computing. In: Chua, L.O., Tetzlaff, R., Slavova, A. (eds) Memristor Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-90582-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90582-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90581-1

  • Online ISBN: 978-3-030-90582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics