Skip to main content

Dynamic Analysis of Memristor Circuits via Input–Output Techniques

  • Chapter
  • First Online:
Memristor Computing Systems
  • 987 Accesses

Abstract

The chapter reviews a recently proposed input–output approach to investigate the dynamics of a class of circuits composed of a linear time-invariant two-terminal element coupled with one ideal flux-controlled memristor. The classical (autonomous) Chua’s and (non-autonomous) Murali–Lakshmanan–Chua’s memristor circuits are employed to discuss the features of the approach, which can be seen as the input–output counterpart of the Flux–Charge Analysis Method (FCAM). It is shown that the dynamics of any circuit of the class admits a first integral, which implies that the circuit dynamics can be obtained by collecting those displayed by a canonical reduced-order input–output system subject to a constant input with a varying amplitude. More specifically, there is a one to one correspondence between the dynamics of the canonical input–output system generated by a fixed amplitude of the constant input and the dynamics displayed by the memristor circuit onto one of the infinite invariant manifolds. It is also shown that the canonical input–output representation of both Chua’s and Murali–Lakshmanan–Chua’s memristor circuits can be implemented via a circuit with a voltage-controlled nonlinear resistor in place of the memristor plus an additional constant voltage source, thus establishing an interesting similarity between memristor circuits and memristor-less circuits. The memristor-less versions are then employed to investigate some features of the dynamics of both Chua’s and Murali–Lakshmanan–Chua’s memristor circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper, the inverse operator \(\mathcal {D}^{-1}\) is the integral operator (i.e., \(\mathcal {D}^{-1} f(t)=\int _{-\infty }^t f(\tau ) d\tau \)) and \(\mathcal {D}^h f(t_0)\) stands for the value of \(\mathcal {D}^h f(t)\) at \(t=t_0\).

  2. 2.

    \(I_n\) denotes the identity matrix of order n.

  3. 3.

    The symbol \(~^\prime \) stands for derivative.

  4. 4.

    The second equality in (2.26) follows since \(w_i(t)=0\) for \(t< t_0\).

  5. 5.

    For the notational simplicity the explicit dependence of \(\bar{v}_{\text{ nr }}\) on \(\Phi _0\) is omitted.

References

  1. Ahamed A, Lakshmanan M (2017) Discontinuity induced Hopf and Neimark–Sacker bifurcations in a memristive Murali–Lakshmanan–Chua circuit. Int J Bifurcat Chaos 27(06):1730,021

    Google Scholar 

  2. Amador A, Freire E, Ponce E, Ros J (2017) On discontinuous piecewise linear models for memristor oscillators. Int J Bifurcat Chaos 27(06):1730,022

    Google Scholar 

  3. Ascoli A, Messaris I, Tetzlaff R, Chua LO (2020) Theoretical foundations of memristor cellular nonlinear networks: Stability analysis with dynamic memristors. IEEE Trans Circuits Syst I: Reg Pap 67(4):1389–1401

    Google Scholar 

  4. Atherton DP (1975) Nonlinear control engineering. Van Nostrand Reinhold, London

    Google Scholar 

  5. Bao B, Xu Q, Bao H, Chen M (2016) Extreme multistability in a memristive circuit. Electron Lett 52(12):1008–1010

    Article  Google Scholar 

  6. Basso M, Genesio R, Tesi A (1997) A frequency method or predicting limit cycle bifurcations. Nonlinear Dyn 13:339–360

    Article  MathSciNet  Google Scholar 

  7. Bonani F, Gilli M (1999) Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans Circuits Syst I(46):881–890

    Article  MathSciNet  Google Scholar 

  8. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM, pp 13–16

    Google Scholar 

  9. Chua LO (1971) Memristor-The missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  10. Corinto F, Ascoli A, Gilli M (2011) Nonlinear dynamics of memristor oscillators. IEEE Trans Circuits Syst I, Reg Pap 58(6):1323–1336

    Google Scholar 

  11. Corinto F, Forti M (2016) Memristor circuits: flux–charge analysis method. IEEE Trans Circuits Syst I, Reg Pap 63(1):1997–2009

    Google Scholar 

  12. Corinto F, Forti M (2017) Memristor circuits: Bifurcations without parameters. IEEE Trans Circuits Syst I, Reg Pap 64(6):1540–1551

    Google Scholar 

  13. Corinto F, Forti M (2018) Memristor circuits: pulse programming via invariant manifolds. IEEE Trans Circuits Syst I: Reg Pap 65(4):1327–1339

    Google Scholar 

  14. Di Marco M, Forti M, Innocenti G, Tesi A (2018) Harmonic balance method to analyze bifurcations in memristor oscillatory circuits. Int J Circuit Theory Appl 46(1):66–83

    Article  Google Scholar 

  15. Di Marco M, Forti M, Pancioni L (2016) Complete stability of feedback CNNs with dynamic memristors and second-order cells. Int J Circuit Theory Appl 44:1959–1981

    Article  Google Scholar 

  16. Di Marco M, Forti M, Pancioni L (2017) Convergence and multistability of nonsymmetric cellular neural networks with memristors. IEEE Trans Cybern 47(10):2970–2983

    Article  Google Scholar 

  17. Di Marco M, Forti M, Pancioni L (2017) Memristor standard cellular neural networks computing in the flux-charge domain. Neural Netw 93:152–164

    Article  Google Scholar 

  18. Di Marco M, Forti M, Tesi A (2003) Harmonic balance approach to predict period-doubling bifurcations in nearly-symmetric neural networks. J Circuits Syst Comput 12(4):435–460

    Article  Google Scholar 

  19. Du C, Cai F, Zidan M, Ma W, Lee S, Lu W (2017) Reservoir computing using dynamic memristors for temporal information processing. Nat Commun 8(1)

    Google Scholar 

  20. Genesio R, Tesi A (1992) A harmonic balance approach for chaos prediction: Chua’s circuit. Int J Bifurcat Chaos 2(01):61–79

    Article  MathSciNet  Google Scholar 

  21. Genesio R, Tesi A (1992) Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3):531–548

    Article  Google Scholar 

  22. Ielmini D, Pedretti G (2020) Device and circuit architectures for in-memory computing. Advanced intelligent systems. p 2000040

    Google Scholar 

  23. Ielmini D, Wong HSP (2018) In-memory computing with resistive switching devices. Nat Electron 1(6):333–343

    Article  Google Scholar 

  24. Innocenti G, Di Marco M, Forti M, Tesi A (2019) Prediction of period doubling bifurcations in harmonically forced memristor circuits. Nonlinear Dyn 96(2):1169–1190

    Article  Google Scholar 

  25. Innocenti G, Di Marco M, Tesi A, Forti M (2020) Input–output characterization of the dynamical properties of circuits with a memelement. Int J Bifurc Chaos 30(07):2050,110

    Google Scholar 

  26. Innocenti G, Tesi A, Genesio R (2010) Complex behaviour analysis in quadratic jerk systems via frequency domain Hopf bifurcation. Int J Bifurc Chaos 20(3):657–667

    Article  Google Scholar 

  27. Itoh M, Chua LO (2008) Memristor oscillators. Int J Bifurc Chaos 18(11):3183–3206

    Article  MathSciNet  Google Scholar 

  28. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Upple Saddle River, New Jersey

    MATH  Google Scholar 

  29. Krestinskaya O, James AP, Chua LO (2019) Neuromemristive circuits for edge computing: a review. IEEE Trans Neural Netw Learn Syst 1–20

    Google Scholar 

  30. Kumar S, Strachan JP, Williams RS (2017) Chaotic dynamics in nanoscale \({ NbO_2}\) Mott memristors for analogue computing. Nature 548(7667):318

    Article  Google Scholar 

  31. Mees AI (1981) Dynamics of feedback systems. Wiley, New York

    MATH  Google Scholar 

  32. Piccardi C (1994) Bifurcations of limit cycles in periodically forced nonlinear systems: the harmonic balance approach. IEEE Trans Circuits Syst I 41(12):315–320

    Article  MathSciNet  Google Scholar 

  33. Ponce E, Ros J, Freire E, Amador A (2017) Unravelling the dynamical richness of 3D canonical memristor oscillators. Microelectron Eng 182:15–24

    Article  Google Scholar 

  34. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39

    Article  Google Scholar 

  35. Tesi A, Abed EH, Genesio R, Wang HO (1996) Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics. Automatica 32(9):1255–1271

    Article  MathSciNet  Google Scholar 

  36. Tetzlaff R, Ascoli A, Messaris I, Chua LO (2020) Theoretical foundations of memristor cellular nonlinear networks: memcomputing with bistable-like memristors. IEEE Trans Circuits Syst I: Reg Pap 67(2):502–515

    Google Scholar 

  37. Waldrop MM (2016) The chips are down for Moore’s law. Nature News 530(7589):144

    Article  Google Scholar 

  38. Wang Z, Ambrogio S, Balatti S, Ielmini D (2014) A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems. Front Neurosci 8 (2014)

    Google Scholar 

  39. Williams RS (2017) What’s next? [The end of Moore’s law]. Comput Sci Eng 19(2):7–13

    Article  Google Scholar 

  40. Yang JJ, Williams RS (2013) Memristive devices in computing system: promises and challenges. ACM J Emerg Technol 9(2):11

    Google Scholar 

  41. Zhu X, Wang Q, Lu WD (2020) Memristor networks for real-time neural activity analysis. Nat Commun 11(1):1–9

    Article  Google Scholar 

  42. Zidan MA, Strachan JP, Lu WD (2018) The future of electronics based on memristive systems. Nat Electron 1(1):22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Di Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Marco, M., Innocenti, G., Tesi, A., Forti, M. (2022). Dynamic Analysis of Memristor Circuits via Input–Output Techniques. In: Chua, L.O., Tetzlaff, R., Slavova, A. (eds) Memristor Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-90582-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90582-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90581-1

  • Online ISBN: 978-3-030-90582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics