Skip to main content

Memristive Models for the Emulation of Biological Learning

  • Chapter
  • First Online:
Memristor Computing Systems

Abstract

Memristive devices offer a number of new possibilities for neuromorphic electronics, and there are currently strong efforts being made to find suitable device structures for this application. In this chapter, the important biological mechanisms for learning and memory emulation and their transfer to memristive devices are presented. Therefore, we use the framework of Hebbian learning models and show how these models can be applied to memristive devices. We explain important cellular paradigms of information processing that allow a transition from the cellular to the network level and address the existing challenges that need to be solved for the development of cognitive electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksander I (2001) How to Build a Mind. Columbia University Press, New York

    Google Scholar 

  2. Amil P, Cabeza C, Masoller C, Martí AC (2015) Organization and identification of solutions in the time-delayed mackey-glass model. Chaos: Interdiscip J Nonlinear Sci 25(4):043112. https://doi.org/10.1063/1.4918593

  3. Arbib MA, Bonaiuto JJ (eds) (2016) From neuron to cognition via computational neuroscience. Computational neuroscience. The MIT Press, Cambridge, MA

    Google Scholar 

  4. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153. https://doi.org/10.1016/j.physrep.2008.09.002

    Article  MathSciNet  Google Scholar 

  5. Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15(5):200–209. https://doi.org/10.1016/j.tics.2011.03.006

    Article  Google Scholar 

  6. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364

    Article  Google Scholar 

  7. Bi G-Q, Poo M-M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464. https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998

    Article  Google Scholar 

  8. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32. https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982

    Article  Google Scholar 

  9. Bliss TVP, Lømo T (1973) Long-Lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356. https://doi.org/10.1113/jphysiol.1973.sp010273

    Article  Google Scholar 

  10. Brenner S (1974) The genetics of Caenorhabditis Elegans. Genetics 77(1):71–94

    Article  Google Scholar 

  11. Bullmore ED, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–98. https://doi.org/10.1038/nrn2575

  12. Bullmore ET, Sporns O (2014) From connections to function: the mouse brain connectome atlas. Cell 157(4):773-775. https://doi.org/10.1016/j.cell.2014.04.023

  13. Burr GW, Shelby RM, Sebastian A, Kim S, Kim S, Sidler S, Virwani K et al (2017) Neuromorphic computing using non-volatile memory. Adv Phys: X 2(1):89–124. https://doi.org/10.1080/23746149.2016.1259585

    Article  Google Scholar 

  14. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford, New York

    Google Scholar 

  15. Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6(10):744–750. https://doi.org/10.1038/nphys1803

    Article  Google Scholar 

  16. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  17. Dehaene S (ed) (2001) The cognitive neuroscience of consciousness. Cognition special issues. MIT Press, Cambridge, MA

    Google Scholar 

  18. Diederich N, Bartsch T, Kohlstedt H, Ziegler M (2018) A memristive plasticity model of voltage-based STDP suitable for recurrent bidirectional neural networks in the hippocampus. Sci Rep 8(1):9367–9367. https://doi.org/10.1038/s41598-018-27616-6

    Article  Google Scholar 

  19. Ellis GFR (2020) Emergence in solid state physics and biology. Found Phys. https://doi.org/10.1007/s10701-020-00367-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Engel AK, Fries P, Konig PK, Brecht M, Singer W (1999) Temporal binding, binocular rivalry, and consciousness. Conscious Cogn 8 (2).

    Google Scholar 

  21. Ernst U, Pawelzik K, Geisel T (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett 74(9):1570–1573

    Article  Google Scholar 

  22. Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of brain network analysis. Elsevier/Academic Press, Amsterdam, Boston

    Google Scholar 

  23. Galizia CG, Lledo P-M (eds) (2013) Neurosciences: from molecule to behavior: a university textbook. Springer Spektrum, Heidelberg, New York

    Google Scholar 

  24. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  25. Hadiyawarman FB, Detiza GOH, Reetu RP, Hirofumi T (2018) Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption. Jpn J Appl Phys 57 (3S2):03EA06. https://doi.org/10.7567/JJAP.57.03EA06

  26. Hebb DO (1974) The organization of behavior: a neuropsychological theory, vol 11. Wiley, New York

    Google Scholar 

  27. Hoppensteadt FC, Eugene MI (1997) Weakly connected neural networks. Applied mathematical sciences, vol 126. Springer, New York

    Google Scholar 

  28. Hu SG, Liu Y, Liu Z, Chen TP, Wang JJ, Yu Q, Deng LJ, Yin Y, Hosaka S (2015) Associative memory realized by a reconfigurable memristive hopfield neural network. Nat Commun 6(1):7522. https://doi.org/10.1038/ncomms8522

    Article  Google Scholar 

  29. Ielmini D, Waser R (eds) (2016) Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  30. Ignatov M, Martin Z, Mirko H, Hermann K (2017) Memristive stochastic plasticity enables mimicking of neural synchrony: memristive circuit emulates an optical illusion. Sci Adv 3(10). https://doi.org/10.1126/sciadv.1700849

  31. Izhikevich Eugene M (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. Computational neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  32. Jeong DS, Hwang CS (2018) Nonvolatile memory materials for neuromorphic intelligent machines. Adv Mater 30(42):1704729. https://doi.org/10.1002/adma.201704729

    Article  Google Scholar 

  33. Kandel ER (1979) Behavioral biology of aplysia: a contribution to the comparative study of opisthobranch molluscs. A series of books in psychology. WH Freeman, San Francisco

    Google Scholar 

  34. (ed) (2013) Principles of neural science, 5th ed. McGraw-Hill, New York

    Google Scholar 

  35. Kendall JD, Kumar S (2020) The building blocks of a brain-inspired computer. Appl Phys Rev 7(1) 011305. https://doi.org/10.1063/1.5129306

  36. Kleinfeld D, Kahler KH, Hockberger PE (1988) Controlled outgrowth of dissociated neurons on patterned substrates. J Neurosci 8(11):4098–4120

    Article  Google Scholar 

  37. Kozma R, Pino RE, Paziena GE (nd) Advances in neuromorphic memristor science and applications. Springer series in cognitive and neural systems, vol 4. Springer, New York

    Google Scholar 

  38. Kriegeskorte N, Douglas PK (2018) Cognitive computational neuroscience. Nat Neurosci 21(9):1148–1160. https://doi.org/10.1038/s41593-018-0210-5

    Article  Google Scholar 

  39. Linares-Barranco B, Serrano-Gotarredona T, Camuñas-Mesa L, Perez-Carrasco J, Zamarreño-Ramos C, Masquelier T (2011) On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front Neurosci 5:26. https://doi.org/10.3389/fnins.2011.00026

  40. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287. https://doi.org/10.1126/science.267326

    Article  MATH  Google Scholar 

  41. von der Christoph M (1999) The what and why of binding: the modeler’s perspective. Philos Explor

    Google Scholar 

  42. Markram H, Gerstner W, Sjöström PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3(August):4–4. https://doi.org/10.3389/fnsyn.2011.00004

    Article  Google Scholar 

  43. Osipov GV, Kurths J, Zhou C (2007) Synchronization in oscillatory networks. Springer series in synergetics. Springer, Berlin, New York

    Google Scholar 

  44. Pantone RD, Kendall JD, Nino JC (2018) Memristive nanowires exhibit small-world connectivity. Neural Netw 106(October):144–151. https://doi.org/10.1016/j.neunet.2018.07.002

    Article  Google Scholar 

  45. Pavlov PI (2010) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann Neurosci 17(3):136–141. https://doi.org/10.5214/ans.0972-7531.1017309

    Article  Google Scholar 

  46. Saïghi S, Christian GM, Teresa S-G, Schmidt H, Lecerf G, Tomas J, Grollier J et al (2015) Plasticity in memristive devices for spiking neural networks. Front Neurosci 9 (March). https://doi.org/10.3389/fnins.2015.00051

  47. Schroeter MS, Charlesworth P, Kitzbichler MG, Paulsen O, Bullmore ET (2015) Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks In Vitro. J Neurosci 35(14):5459. https://doi.org/10.1523/JNEUROSCI.4259-14.2015

    Article  Google Scholar 

  48. Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B (2013) STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 7:2. https://doi.org/10.3389/fnins.2013.00002

    Article  Google Scholar 

  49. Singer W (1998) Consciousness and the structure of neuronal representations. Philosophical transactions of the royal society of London. Series B: biological sciences, vol 353 (1377), p 1829. https://doi.org/10.1098/rstb.1998.0335

  50. Skarda CA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10(2):161–173. https://doi.org/10.1017/S0140525X00047336

    Article  Google Scholar 

  51. Sporns O (2011) Networks of the brain. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  52. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425. https://doi.org/10.1016/j.tics.2004.07.008

    Article  Google Scholar 

  53. Stent GS (1973) A physiological mechanism for hebb’s postulate of learning. Proc Natl Acad Sci 70(4):997. https://doi.org/10.1073/pnas.70.4.997

    Article  Google Scholar 

  54. Strogatz SH (2015) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, 2nd edn. Westview Press, a member of the Perseus Books Group, Boulder, CO

    MATH  Google Scholar 

  55. Tetzlaff R (2014) Memristors and memristives systems

    Google Scholar 

  56. Uhlhaas P, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolić D, Singer W (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17. https://doi.org/10.3389/neuro.07.017.2009

    Article  Google Scholar 

  57. van den Heuvel, MP, Pol HEH (2010) Exploring the brain network: a review on resting-state FMRI functional connectivity. Eur Neuropsychopharmacology 20(8):519–34. https://doi.org/10.1016/j.euroneuro.2010.03.008

  58. Van Ooyen A, Markus B-O (eds) (2017) The rewiring brain: a computational approach to structural plasticity in the adult brain. Elsevier, Academic Press, London , San Diego, CA

    Google Scholar 

  59. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7(12):553–559. https://doi.org/10.1016/j.tics.2003.10.012

    Article  Google Scholar 

  60. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans. J Comp Neurol 160(3):313–337. https://doi.org/10.1002/cne.901600305

    Article  Google Scholar 

  61. Watts DJ, Strogatz SH (1998) Collective dynamics of/`small-World/’networks. Nature 393(6684):440–442. https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

  62. Xia Q, Joshua Yang J (2019) Memristive crossbar arrays for brain-inspired computing. Nat Mater 18(4):309–323. https://doi.org/10.1038/s41563-019-0291-x

    Article  Google Scholar 

  63. Yang JJ, Strukov DB, Stewart DR (2012) Memristive devices for computing. Nat Nanotechnol 8(Dec):13

    Google Scholar 

  64. Zidan MA., Strachan JP, Lu WD (2018) The future of electronics based on memristive systems. Nat Electron 1(1):22–29. https://doi.org/10.1038/s41928-017-0006-8

  65. Ziegler M, Wenger C, Chicca E, Kohlstedt H (2018) Tutorial: concepts for closely mimicking biological learning with memristive devices: principles to emulate cellular forms of learning. J Appl Phys 124(15):152003. https://doi.org/10.1063/1.5042040

  66. Ziegler M, Soni R, Patelczyk T, Ignatov M, Bartsch T, Meuffels P, Kohlstedt H (2012) An electronic version of pavlov’s dog. Adv Func Mater 22(13):2744–2749. https://doi.org/10.1002/adfm.201200244

    Article  Google Scholar 

  67. Ziegler M, Wenger C, Zahari F, Mahadevaiah MK, Pérez E, Beckers I, Kohlstedt H, Ziegler M (2019) Inherent stochastic learning in CMOS-Integrated HfO2 arrays for neuromorphic computing. IEEE Electron Device Lett 40(4):639–642. https://doi.org/10.1109/LED.2019.2900867

    Article  Google Scholar 

  68. Ziegler MC, Riggert M, Hansen TB, Kohlstedt H (2015) Memristive hebbian plasticity model: device requirements for the emulation of hebbian plasticity based on memristive devices. IEEE Trans Biomed Circuits Syst 9(2):197–206. https://doi.org/10.1109/TBCAS.2015.2410811

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support via the Deutsche Forschungsgemeinschaft (DFG) by the Research Unit 2093: memristive devices for neuronal systems, Carl Zeiss Foundation via MemWerk: memristive materials for neuromorphic electronics, and Nick Diederich for carefully reading the manuscript. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434434223 – SFB 1461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ziegler, M., Kohlstedt, H. (2022). Memristive Models for the Emulation of Biological Learning. In: Chua, L.O., Tetzlaff, R., Slavova, A. (eds) Memristor Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-90582-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90582-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90581-1

  • Online ISBN: 978-3-030-90582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics