Skip to main content

Optical Memristors: Review of Switching Mechanisms and New Computing Paradigms

  • Chapter
  • First Online:
Memristor Computing Systems

Abstract

Memristors are known for their low-power non-volatile memory operation, high scalability and simple two-terminal geometry. Their ability to emulate the analogue switching and learning properties of biological synapses has also emerged as a significant area of importance that has the potential to usher in a new generation of bio-inspired neuromorphic computing systems. Recently, there has been a drive towards the realization of memristor devices that can be controlled by light. The integration of non-volatile electronic memory with high speed and high bandwidth optical signalling provides a natural platform for applications in optical telecommunications and photonic computing. There are also significant advantages to be gained by utilizing the light tuneable properties of these artificial synapses and their already wide range of demonstrated neuronal functions, an important topic especially relevant as we enter the era of post von Neumann computing and the need for increased computational power to fuel new Artificial Intelligence applications, the Internet of Things, Big Data and Edge Computing. A variety of different physical mechanisms have been exploited in the development of optical memristors, including barrier modification, photo-induced molecular switching processes, plasmonic interactions with nanoscale conductive filaments and photogating mechanisms in 2-D materials. This review will examine the different methods used to achieve optical memristor switching and discuss their potential future applications in photonic and neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78:1629–1636

    Article  Google Scholar 

  2. Wulf WA, McKee SA (1995) Hitting the memory wall. ACM SIGARCH Comput. Archit. News. 23:20–24

    Article  Google Scholar 

  3. Theis TN, Philip Wong HS (2017) The end of Moore’s Law: a new beginning for information technology. Comput Sci Eng 19:41–50

    Article  Google Scholar 

  4. Chua L (1971) Memristor-The missing circuit element. IEEE Trans. Circuit Theory. 18:507–519

    Article  Google Scholar 

  5. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  6. Lin P, Li C, Wang Z, Li Y, Jiang H, Song W, Rao M, Zhuo Y, Upadhyay NK, Barnell M, Wu Q, Yang JJ, Xia Q (2020) Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3:225–232

    Article  Google Scholar 

  7. Ielmini D, Wong HSP (2018) In-memory computing with resistive switching devices. Nat. Electron. 1:333–343

    Article  Google Scholar 

  8. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

  9. Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE, Li Z, Strachan JP, Lin P, Wang Z, Barnell M, Wu Q, Williams RS, Yang JJ, Xia Q (2018) Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1:52–59

    Article  Google Scholar 

  10. Pi S, Li C, Jiang H, Xia W, Xin H, Yang JJ, Xia Q (2019) Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat Nanotechnol 14:35–39

    Article  Google Scholar 

  11. Waldrop MM (2016) More than moore. Nature 530:144–147

    Article  Google Scholar 

  12. Miller DAB (2010) Optical interconnects to electronic chips. Appl Opt 49:59–70

    Article  Google Scholar 

  13. Di Martino, G., Tappertzhofen, S.: Optically accessible memristive devices. Nanophotonics 8, 1579–1589 (2019)

    Google Scholar 

  14. Kim GS, Song H, Lee YK, Kim JH, Kim W, Park TH, Kim HJ, Min Kim K, Hwang CS (2019) Defect-Engineered electroforming-free analog HfOx memristor and its application to the neural network. ACS Appl Mater Interfaces 11:47063–47072

    Article  Google Scholar 

  15. Verrelli, E., Gray, R.J., Neill, M.O., Kelly, S.M., Kemp, N.T.: Microwave oven fabricated hybrid memristor devices for non-volatile memory storage. Mater. Res. Express. 1 046305 (2014)

    Google Scholar 

  16. Mehonic A, Shluger AL, Gao D, Valov I, Miranda E, Ielmini D, Bricalli A, Ambrosi E, Li C, Yang JJ, Xia Q, Kenyon AJ (2018) Silicon Oxide (SiOx): a promising material for resistance switching? Adv Mater 30:1–21

    Article  Google Scholar 

  17. Jaafar AH, Gee A, Kemp NT (2020) Nanorods versus nanoparticles: a comparison study of Au/ZnO-PMMA/Au non-volatile memory devices showing the importance of nanostructure geometry on conduction mechanisms and switching properties. IEEE Trans Nanotechnol 19:236–246

    Article  Google Scholar 

  18. Choi BJ, Torrezan AC, Strachan JP, Kotula PG, Lohn AJ, Marinella MJ, Li Z, Williams RS, Yang JJ (2016) High-Speed and low-energy nitride memristors. Adv Funct Mater 26:5290–5296

    Article  Google Scholar 

  19. Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H, Miao X (2013) Ultrafast synaptic events in a chalcogenide memristor. Sci Rep 3:1–7

    Google Scholar 

  20. Valov I, Kozicki M (2017) Organic memristors come of age. Nat Mater 16:1170–1172

    Article  Google Scholar 

  21. Maier, P., Hartmann, F., Rebello Sousa Dias, M., Emmerling, M., Schneider, C., Castelano, L.K., Kamp, M., Marques, G.E., Lopez-Richard, V., Worschech, L., Höfling, S.: Light sensitive memristor with bi-directional and wavelength-dependent conductance control. Appl. Phys. Lett. 109 (2016)

    Google Scholar 

  22. Bertolazzi S, Bondavalli P, Roche S, San T, Choi SY, Colombo L, Bonaccorso F, Samorì P (2019) Nonvolatile memories based on graphene and related 2D materials. Adv Mater 31:1–35

    Article  Google Scholar 

  23. Khiat, A., Ayliff, P., Prodromakis, T.: High density crossbar arrays with Sub-15 nm single cells via liftoff process only. Sci. Rep. 1–8 (2016)

    Google Scholar 

  24. Li C, Han L, Jiang H, Jang MH, Lin P, Wu Q, Barnell M, Yang JJ, Xin HL, Xia Q (2017) Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat Commun 8:1–9

    Google Scholar 

  25. Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521:61–64

    Article  Google Scholar 

  26. Yoshida, Y., Wakabayashi, I., Kawahara, T.: Scaling limit of silicon nano-wire waveguides. 2016 5th International Symposium on Next-Generation Electronics (2016). ISNE 2016

    Google Scholar 

  27. Liu K, Sun S, Majumdar A, Sorger VJ (2016) Fundamental scaling Laws in Nanophotonics. Sci Rep 6:1–12

    Google Scholar 

  28. Zhou Z, Yin B, Michel J (2015) On-chip light sources for silicon photonics. Light Sci. Appl. 4:1–13

    Article  Google Scholar 

  29. Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Mario P (2005) A continuous-wave Raman silicon laser. Nature 433:717–719

    Google Scholar 

  30. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431:1081–1084

    Article  Google Scholar 

  31. Vlasov YA, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65–69

    Article  Google Scholar 

  32. Liu L, Kumar R, Huybrechts K, Spuesens T, Roelkens G, Geluk EJ, De Vries T, Regreny P, Van Thourhout D, Baets R, Morthier G (2010) An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat Photonics 4:182–187

    Article  Google Scholar 

  33. Michel J, Liu J, Kimerling LC (2010) High-performance Ge-on-Si photodetectors. Nat Photonics 4:527–534

    Article  Google Scholar 

  34. Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso LE (2012) A light-controlled resistive switching memory. Adv Mater 24:2496–2500

    Article  Google Scholar 

  35. Specht M, Reisinger H, Hofmann F, Schulz T, Landgraf E, Luyken RJ, Rösner W, Grieb M, Risch L (2005) Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications. Solid State Electron 49:716–720

    Article  Google Scholar 

  36. Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R (2017) Light-Gated memristor with integrated logic and memory functions. ACS Nano 11:11298–11305

    Article  Google Scholar 

  37. Mehonic, A., Gerard, T., Kenyon, A.J.: Light-activated resistance switching in SiOx RRAM devices. Appl. Phys. Lett. 111 (2017)

    Google Scholar 

  38. Gao DZ, El-Sayed AM, Shluger AL (2016) A mechanism for Frenkel defect creation in amorphous SiO2 facilitated by electron injection. Nanotechnology 27:1–7

    Article  Google Scholar 

  39. Lv, Z., Wang, Y., Chen, Z., Sun, L., Wang, J., Chen, M., Xu, Z., Liao, Q., Zhou, L., Chen, X., Li, J., Zhou, K., Zhou, Y., Zeng, Y.J., Han, S.T., Roy, V.A.L.: Phototunable Biomemory based on light-mediated charge trap. Adv. Sci. 5 (2018)

    Google Scholar 

  40. Wang J, Lv Z, Xing X, Li X, Wang Y, Chen M, Pang G, Qian F, Zhou Y, Han ST (2020) Optically modulated threshold switching in core-shell quantum dot based memristive device. Adv Funct Mater 30:1–11

    Google Scholar 

  41. Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han ST (2020) Semiconductor quantum dots for memories and neuromorphic computing systems. Chem Rev 120:3941–4006

    Article  Google Scholar 

  42. Wang Y, Lv Z, Liao Q, Shan H, Chen J, Zhou Y, Zhou L, Chen X, Roy VAL, Wang Z, Xu Z, Zeng Y-J, Han S-T (2018) Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv Mater 30:1800327

    Article  Google Scholar 

  43. Chen Z, Yu Y, Jin L, Li Y, Li Q, Li T, Li J, Zhao H, Zhang Y, Dai H, Yao J (2020) Broadband photoelectric tunable quantum dot based resistive random access memory. J. Mater. Chem. C. 8:2178–2185

    Article  Google Scholar 

  44. Maier P, Hartmann F, Emmerling M, Schneider C, Kamp M, Höfling S, Worschech L (2016) Electro-Photo-Sensitive memristor for neuromorphic and arithmetic computing. Phys Rev Appl 5:1–9

    Article  Google Scholar 

  45. Maier P, Hartmann F, Mauder T, Emmerling M, Schneider C, Kamp M, Höfling S, Worschech L (2015) Memristive operation mode of a site-controlled quantum dot floating gate transistor. Appl Phys Lett 106:1–5

    Article  Google Scholar 

  46. Lee J-K, Cho JMM, Shin WSS, Moon SJJ, Kemp NTT, Zhang H, Lamb R (2008) The stability of PEDOT:PSS films monitored by electron spin resonance. J Korean Phys Soc 52:621

    Article  Google Scholar 

  47. Kemp, N.T., Newbury, R., Cochrane, J.W., Dujardin, E.: Electronic transport in conducting polymer nanowire array devices. Nanotechnology 22, 105202 (2011)

    Google Scholar 

  48. Meng, L., Xin, N., Hu, C., Wang, J., Gui, B., Shi, J., Wang, C., Shen, C., Zhang, G., Guo, H., Meng, S., Guo, X.: Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 10 (2019)

    Google Scholar 

  49. Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff RS, Choi SY (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett 10:4381–4386

    Article  Google Scholar 

  50. Jin Y, Zheng Y, Podkolzin SG, Lee W (2020) Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater. Chem. C. 8:4885–4894

    Article  Google Scholar 

  51. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  Google Scholar 

  52. Hun, S.: Thermal reduction of graphene Oxide. In: Mikhailov, D.S. (ed.) Physics and Applications of Graphene—Experiments, pp. 73–90 (2011)

    Google Scholar 

  53. El-Kady, M.F., Strong, V., Dubin, S., Kaner, R.B.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 80–335, 1326–1330 (2012)

    Google Scholar 

  54. Zhuge F, Hu B, He C, Zhou X, Liu Z, Li R (2011) Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon N. Y. 49:3796–3802

    Article  Google Scholar 

  55. Porro S, Ricciardi C (2015) Memristive behaviour in inkjet printed graphene oxide thin layers. RSC Adv 5:68565–68570

    Article  Google Scholar 

  56. Wang, L., Yang, W., Sun, Q., Zhou, P., Lu, H., Ding, S., Zhang, D.W., Wang, L., Yang, W., Sun, Q., Zhou, P., Lu, H., Ding, S.: The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 100, 063509 (2012)

    Google Scholar 

  57. Jaafar AH, Kemp NT (2019) Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices. Carbon N.Y. 153:81–88

    Article  Google Scholar 

  58. Chen X, Zhu X, Zhang SR, Pan J, Huang P, Zhang C, Ding G, Zhou Y, Zhou K, Roy VAL, Han ST (2019) Controlled nonvolatile transition in Polyoxometalates-Graphene oxide hybrid memristive devices. Adv. Mater. Technol. 4:1800551

    Article  Google Scholar 

  59. Luo Q, Cheng H, Tian H (2011) Recent progress on photochromic diarylethene polymers. Polym Chem 2:2435–2443

    Article  Google Scholar 

  60. Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R, Qian Y, Xie L, Huang W (2017) Light-Tunable nonvolatile memory characteristics in photochromic RRAM. Adv. Electron. Mater. 3:1–7

    Article  Google Scholar 

  61. Jaafar AH, O’Neill M, Kelly SM, Verrelli E, Kemp NT (2019) Percolation threshold enables optical resistive-memory switching and light-tuneable synaptic learning in segregated nanocomposites. Adv. Electron. Mater. 5:1900197

    Article  Google Scholar 

  62. Jaafar AH, Gray RJ, Verrelli E, O’Neill M, Kelly SM, Kemp NT (2017) Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems. Nanoscale 9:17091–17098

    Article  Google Scholar 

  63. Tanchak OM, Barrett CJ (2005) Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect. Macromolecules 38:10566–10570

    Article  Google Scholar 

  64. Georgiou, J., Kossifos, K.M., Antoniades, M.A., Jaafar, A.H., Kemp, N.T.: Chua mem-components for adaptive RF metamaterials. In: Proceedings—IEEE International Symposium on Circuits and Systems. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  65. Kossifos, K.M., Antoniades, M.A., Georgiou, J., Jaafar, A.H., Kemp, N.T.: An optically-programmable absorbing metasurface. In: Proceedings—IEEE International Symposium on Circuits and Systems. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  66. Wang P, Nasir ME, Krasavin AV, Dickson W, Zayats AV (2020) Optoelectronic synapses based on hot-electron-induced chemical processes. Nano Lett 20:1536–1541

    Article  Google Scholar 

  67. Emboras A, Goykhman I, Desiatov B, Mazurski N, Stern L, Shappir J, Levy U (2013) Nanoscale plasmonic memristor with optical readout functionality. Nano Lett 13:6151

    Article  Google Scholar 

  68. Barrios CA, Lipson M (2006) Silicon photonic read-only memory. J. Light. Technol. 24:2898

    Article  Google Scholar 

  69. Zhang, W., Liu, H., Lu, J., Ni, L., Liu, H., Li, Q., Qiu, M., Xu, B., Lee, T., Zhao, Z., Wang, X., Wang, M., Wang, T., Offenhäusser, A., Mayer, D., Hwang, W.T., Xiang, D.: Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 8 (2019)

    Google Scholar 

  70. Gee, A., Jaafar, A.H., Kemp, N.T.: Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration. Nanotechnology 31, 155203 (2020)

    Google Scholar 

  71. Gee, A., Jaafar, A.H., Brachňaková, B., Massey, J., Marrows, C.H., Šalitroš, I., Kemp, N.T.: Multilevel Resistance Switching and Enhanced Spin Transition Temperature in Single Molecule Spin Crossover Nanogap Devices (2020)

    Google Scholar 

  72. Emboras A, Niegemann J, Ma P, Haffner C, Pedersen A, Luisier M, Hafner C, Schimmel T, Leuthold J (2016) Atomic scale plasmonic switch. Nano Lett 16:709–714

    Article  Google Scholar 

  73. Emboras A, Alabastri A, Ducry F, Cheng B, Salamin Y, Ma P, Andermatt S, Baeuerle B, Josten A, Hafner C, Luisier M, Nordlander P, Leuthold J (2018) Atomic scale photodetection enabled by a memristive junction. ACS Nano 12:6706–6713

    Article  Google Scholar 

  74. Touch, J., Badawy, A.H., Sorger, V.J.: Opt. Comput. (2017)

    Google Scholar 

  75. Goodman, J.W.: Introduction to fourier optics. Roberts; 3rd edn., 1 Jan. 2005

    Google Scholar 

  76. Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L, Georgas MS, Waterman AS, Shainline JM, Avizienis RR, Lin S, Moss BR, Kumar R, Pavanello F, Atabaki AH, Cook HM, Ou AJ, Leu JC, Chen YH, Asanović K, Ram RJ, Popović MA, Stojanović VM (2015) Single-chip microprocessor that communicates directly using light. Nature 528:534–538

    Article  Google Scholar 

  77. Rosenbluth D, Kravtsov K, Fok MP, Prucnal PR (2009) A high performance photonic pulse processing device. Opt Express 17:22767

    Article  Google Scholar 

  78. Shastri, B.J., Tait, A.N., Ferreira de Lima, T., Nahmias, M.A., Peng, H.-T., Prucnal, P.R.: Neuromorphic Photonics, Principles of (2018)

    Google Scholar 

  79. Van Der Sande, G., Brunner, D., Soriano, M.C.: Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017)

    Google Scholar 

  80. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1273–1290

    Article  MathSciNet  MATH  Google Scholar 

  81. Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tetzlaff, R., Puffer, F.: Simulating nonlinear waves and partial differential equations via CNN. I. Basic techniques. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42, 807–815 (1995)

    Google Scholar 

  82. Zarándy Á, Rekeczky C (2005) Bi-i: a standalone ultra high speed cellular vision system. IEEE Circuits Syst Mag 5:36–45

    Article  Google Scholar 

  83. Tetzlaff R, Niederhöfer C, Fischer P (2006) Automated detection of a preseizure state: non-linear EEG analysis in epilepsy by Cellular Nonlinear Networks and Volterra systems. Int J Circuit Theory Appl 34:89–108

    Article  MATH  Google Scholar 

  84. Ascoli, A., Tetzlaff, R., Kang, S.-M., Chua, L.O.: Theoretical foundations of memristor cellular nonlinear networks: a DRM2-Based method to design memcomputers with dynamic memristors. IEEE Trans. Circuits Syst. I Regul. 67, 1–14 (2020)

    Google Scholar 

  85. Messaris, I., Ascoli, A., Meinhardt, G.S., Tetzlaff, R., Chua, L.O.: Mem-computing CNNs with bistable-like memristors. In: Proceedings—IEEE International Symposium on Circuits and Systems, May 2019

    Google Scholar 

  86. Ascoli, A., Messaris, I., Tetzlaff, R., Chua, L.O.: CNNs with bistable-like non-volatile memristors: a novel mem-computing paradigm for the IoT era. In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems ICECS 2018, pp. 541–544 (2019)

    Google Scholar 

  87. Rodríguez-Vázquez A, Fernández-Berni J, Leñero-Bardallo JA, Vornicu I, Carmona-Galán R (2018) CMOS vision sensors: embedding computer vision at imaging front-ends. IEEE Circuits Syst Mag 18:90–107

    Article  Google Scholar 

  88. Chen S, Lou Z, Chen D, Shen G (2018) An artificial flexible visual memory system based on an UV-Motivated memristor. Adv Mater 1705400:1–9

    Google Scholar 

  89. van Rossum MCW, Smith RG (1998) Noise removal at the rod synapse. Vis Neurosci 15:809

    Article  Google Scholar 

  90. Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–164

    Article  Google Scholar 

  91. Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178

    Article  Google Scholar 

  92. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    Article  Google Scholar 

  93. Li S, Zeng F, Chen C, Liu H, Tang G, Gao S, Song C, Lin Y, Pan F, Guo D (2013) Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C. 1:5292–5298

    Article  Google Scholar 

  94. Zeng F, Li S, Yang J, Pan F, Guo D (2014) Learning processes modulated by the interface effects in a Ti/conducting polymer/Ti resistive switching cell. RSC Adv 4:14822–14828

    Article  Google Scholar 

  95. Subramaniam A, Cantley KD, Bersuker G, Gilmer DC, Vogel EM (2013) Spike-timing-dependent plasticity using biologically realistic action potentials and low-temperature materials. IEEE Trans Nanotechnol 12:450–459

    Article  Google Scholar 

  96. Prezioso M, Merrikh Bayat F, Hoskins B, Likharev K, Strukov D (2016) Self-Adaptive spike-time-dependent plasticity of Metal-Oxide memristors. Sci Rep 6:2–7

    Article  Google Scholar 

  97. Gelebart, A.H., Jan Mulder, D., Varga, M., Konya, A., Vantomme, G., Meijer, E.W., Selinger, R.L.B., Broer, D.J.: Making waves in a photoactive polymer film. Nature 546, 632–636 (2017)

    Google Scholar 

  98. Zha RH, Vantomme G, Berrocal JA, Gosens R, De Waal B, Meskers S, Meijer EW (2018) Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Adv Funct Mater 28:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Kemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gee, A., Jaafar, A.H., Kemp, N.T. (2022). Optical Memristors: Review of Switching Mechanisms and New Computing Paradigms. In: Chua, L.O., Tetzlaff, R., Slavova, A. (eds) Memristor Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-90582-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90582-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90581-1

  • Online ISBN: 978-3-030-90582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics