Skip to main content

Response of Foodborne Pathogens to Thermal Processing

  • Chapter
  • First Online:
Stress Responses of Foodborne Pathogens

Abstract

Thermal processing is considered as the principal method of microbial inactivation in food industry. The use of heat to achieve a specific lethality is one of the important critical control points in reducing the risks associated with foodborne pathogens. However, the mechanisms of bacterial thermal inactivation and the factors affecting bacterial heat resistance are still not well understood. This chapter gave a general overview for various aspects of heat processing, including the thermal inactivation kinetics, the factors affecting the microbial heat resistance, the effect of thermal exposure on the cellular sites of microbes, as well as the regulation mechanisms underlying microbial heat resistance. This could help in predicting the effects of heat on foodborne pathogens and develop hurdles to ensure efficient microbial inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol 50(1–2):65–91

    Article  CAS  PubMed  Google Scholar 

  • ACMSF (2007) Report on safe cooking of burgers. Food Standards Agency, London

    Google Scholar 

  • Aguirre JS, Pin C, Rodriguez MR et al (2009) Analysis of the variability in the number of viable bacteria after mild heat treatment of food. Appl Environ Microbiol 75:6992–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Sakkaf A, Jones G (2012) Thermal inactivation of Campylobacter jejuni in broth. J Food Prot 75:1029–1035

    Article  PubMed  Google Scholar 

  • Aljarallah KM, Adams MR (2007) Mechanisms of heat inactivation in Salmonella serotype Typhimurium as affected by low water activity at different temperatures. J Appl Microbiol 102:153–160

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Ordonez A, Fernandez A, Lopez M et al (2008) Modifications in membrane fatty acid composition of Salmonella Typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 123:212–219

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Ordonez A, Fernandez A, Lopez M et al (2009) Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella Senftenberg CECT 4384. Food Microbiol 26:347–353

    Article  CAS  PubMed  Google Scholar 

  • Anellis A, Lubas J, Rayman MM (1954) Heat resistance in liquid eggs of some strains of the genus Salmonella. J Food Sci 19:377–395

    Article  Google Scholar 

  • Ariefdjohan MW, Nelson PE, Singh RK et al (2004) Efficacy of high hydrostatic pressure treatment in reducing Escherichia coli O157 and Listeria monocytogenes in alfalfa seeds. J Food Sci 69:M117–M120

    Article  CAS  Google Scholar 

  • Augustin J, Carlier V, Rozier J (1998) Mathematical modelling of the heat resistance of Listeria monocytogenes. J Appl Microbiol 84:185–191

    Article  CAS  PubMed  Google Scholar 

  • Ayrapetyan M, Williams TC, Oliver JD (2015) Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bacon RT, Ransom JR, Sofos JN et al (2003) Thermal inactivation of susceptible and multiantimicrobial-resistant Salmonella strains grown in the absence or presence of glucose. Appl Environ Microbiol 69:4123–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird-Parker TC, Gould GW, Lund BM (2000) The microbiological safety and quality of food. Aspen Publishers, Gaithersburg

    Google Scholar 

  • Ball CO (1943) Short-time pasteurization of milk. Ind Eng Chem 35:71–84

    Article  CAS  Google Scholar 

  • Bean D, Bourdichon F, Bresnahan D et al (2012) Risk assessment approaches to setting thermal processes in food manufacture. Risk assessment approaches to setting thermal processes in food manufacture. ILSI Europe publisher, Brussels.

    Google Scholar 

  • Beckers HJ, Soentoro PSS, Delgou-van Asch EHM (1987) The occurrence of Listeria monocytogenes in soft cheeses and raw milk and its resistance to heat. Int J Food Microbiol 4:249–256

    Article  Google Scholar 

  • Besse NG (2002) Influence of various environmental parameters and of detection procedures on the recovery of stressed L. monocytogenes: a review. Food Microbiol 19:221–234

    Article  Google Scholar 

  • Bevilacqua A, Petruzzi L, Sinigaglia M et al (2020) Effect of physical and chemical treatments on viability, sub-lethal injury, and release of cellular components from Bacillus Clausii and Bacillus Coagulans spores and cells. Foods 2020:9(12)

    Google Scholar 

  • Bigelow W (1921) The logarithmic nature of thermal death time curves. J Infect Dis 29:528–536

    Article  Google Scholar 

  • Blackburn CW, Curtis LM, Humpheson L et al (1997) Development of thermal inactivation models for Salmonella Enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. Int J Food Microbiol 38:31–44

    Article  CAS  PubMed  Google Scholar 

  • Bojer MS, Struve C, Ingmer H et al (2010) Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nonsocomial persistence of Klebsiella pneumoniae. PLoS One 5:e15467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boll EJ, Marti R, Hasman H et al (2017) Turn up the heat-food and clinical Escherichia coli isolates feature two transferrable loci of heat resistance. Front Microbiol 8:579

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchanan R, Golden M, Whiting R (1993) Differentiation of the effects of pH and lactic or acetic acid concentration on the kinetics of Listeria monocytogenes inactivation. J Food Prot 56:474–474

    Article  CAS  PubMed  Google Scholar 

  • Carmody RN, Weintraub GS, Wrangham RW (2012) Reply to Wollstonecroft et al.: cooking increases the bioavailability of starch from diverse plant sources. Proc Natl Acad Sci USA 109:E992–E992

    Article  CAS  PubMed Central  Google Scholar 

  • Carruthers MD, Minion C (2009) Transcriptome analysis of Escherichia coli O157:H7 EDL933 during heat shock. FEMS Microbiol Lett 295:96–102

    Article  CAS  PubMed  Google Scholar 

  • Cebrián G, Condón S, Mañas P (2017) Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods 6:107

    Article  CAS  PubMed Central  Google Scholar 

  • CFIA (2014) Inspection procedures, dispositions, monitoring and controls, Chapter 4. In: Meat hygiene manual of procedures. Meat and poultry products. Canadian Food Inspection Agency

    Google Scholar 

  • Chastanet A, Fert J, Msadek T (2003) Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 47:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Chen GB, Campanella OH, Corvalan CM et al (2008) On-line correction of process temperature deviations in continuous retorts. J Food Eng 84:258–269

    Article  Google Scholar 

  • Chhabra AT, Carter WH, Linton RH et al (2002) A predictive model that evaluates the effect of growth conditions on the thermal resistance of Listeria monocytogenes. Int J Food Microbiol 78:235–243

    Article  CAS  PubMed  Google Scholar 

  • Chueca B, Pagán R, García-Gonzalo D (2015) Transcriptomic analysis of Escherichia coli MG1655 cells exposed to pulsed electric fields. Innov Food Sci Emerg 29:78–86

    Article  CAS  Google Scholar 

  • Clavero M, Beuchat LR (1996) Survival of Escherichia coli O157: H7 in broth and processed salami as influenced by pH, water activity, and temperature and suitability of media for its recovery. Appl Environ Microbiol 62:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MB, Davies KW, Munro G et al (1993) A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J Ind Microbiol Biotechnol 12:232–239

    Google Scholar 

  • Coote P, Jones M, Seymour I et al (1994) Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 140:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Crawford RG, Beliveau CM, Peeler JT et al (1989) Comparative recovery of uninjured and heat-injured Listeria-monocytogenes cells from Bovine-Milk. Appl Environ Microbiol 55:1490–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey KR, Thomas CJ, Cerf O (2001) Thermal death of bacteria. J Appl Microbiol 90:148–150

    Article  CAS  PubMed  Google Scholar 

  • Donnelly CW, Briggs EH, Donnelly LS (1987) Comparison of heat resistance of Listeria monocytogenes in milk as determined by two methods. J Food Pro 50:14–17

    Article  Google Scholar 

  • El-Samad H, Kurata H, Doyle JC et al (2005) Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci USA 102:2736–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FDA (2011) Chapter 16: pathogenic bacteria survival through cooking or pasteurization. In: Fish and fishery products: hazards and controls guidance. DIANE Publishing, Darby

    Google Scholar 

  • Fong K, Wang S (2016) Heat resistance of Salmonella enterica is increased by pre-adaptation to peanut oil or sub-lethal heat exposure. Food Microbiol 58:139–147

    Article  CAS  PubMed  Google Scholar 

  • FSAI (1999) The prevention of E. coli O157:H7 infection a shared responsibility. Food Safety Authority of Ireland, Dublin, Ireland, 1999, 53pp

    Google Scholar 

  • Gaafar RM, Hamouda MM, El-Dougdoug KA et al (2019) Expression of DnaK and HtrA genes under high temperatures and their impact on thermotolerance of Salmonella serotype isolated from tahini product. J Genet Eng Biotechnol 17

    Google Scholar 

  • Gajdosova J, Benedikovicova K, Kamodyova N et al (2011) Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains. Ant Van Leeuwenhoek 100:279–289

    Article  CAS  Google Scholar 

  • Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105

    Article  CAS  PubMed  Google Scholar 

  • George SM, Richardson LC, Pol IE et al (1998) Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes. J Appl Microbiol 84:903–909

    Article  CAS  PubMed  Google Scholar 

  • Gilbert P (1983) The revival of micro-organisms sublethally injured by chemical inhibitors. Soc Appl Bacteriol Symp Ser 12:175–197

    Google Scholar 

  • Govers SK, Gayan E, Aertsen A (2017) Intracellular movement of protein aggregates reveals heterogeneous inactivation and resuscitation dynamics in stressed populations of Escherichia coli. Environ Microbiol 19:511–523

    Article  CAS  PubMed  Google Scholar 

  • Guernec A, Robichaud-Rincon P, Saucier L (2013) Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking. Appl Environ Microbiol 79:4940–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunvig A, Tørngren MA (2015) Recommendations of microbiological safe cooking of meat at temperatures below 75°C. In: 61st International Congress of Meat Science and Technology, 23–28th August 2015, Clermont-Ferrand, France

    Google Scholar 

  • Heldman DR, Newsome RL (2003) Kinetic models for microbial survival during processing. Food Technol 57:40–47

    Google Scholar 

  • Hersom A (1975) Thermal processing. Proc R Soc Lond B Biol Sci 191:12

    Google Scholar 

  • Hu Y, Oliver HF, Raengpradub S et al (2007) Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocytogenes. Appl Environ Microb 73(24):7981–7991

    Article  CAS  Google Scholar 

  • Humpheson L, Adams M, Anderson W et al (1998) Biphasic thermal inactivation kinetics in Salmonella Enteritidis PT4. Appl Environ Microb 64:459–464

    Article  CAS  Google Scholar 

  • Hurst A, Hughes A (1978) Stability of ribosomes of Staphylococcus aureus S6 sublethally heated in different buffers. J Bacteriol 133:564–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iandolo JJ, Ordal ZJ (1966) Repair of thermal injury of Staphylococcus aureus. J Bacteriol 91:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasson V, Uyttendaele M, Rajkovic A et al (2007) Establishment of procedures provoking sub-lethal injury of Listeria monocytogenes, Campylobacter jejuni and Escherichia coli O157 to serve method performance testing. Int J Food Microbiol 118:241–249

    Article  CAS  PubMed  Google Scholar 

  • Juneja VK, Klein PG, Marmer BS et al (1998) Heat shock and thermos tolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef. J Appl Microbiol 84(4):677–684

    Article  CAS  PubMed  Google Scholar 

  • Katzin LI, Sandholzer LA, Strong ME (1943) Application of the decimal reduction time principle to a study of the resistance of coliform bacteria to pasteurization. J Bacteriol 45:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller SE, Shazer AG, Fleischman GJ et al (2008) Modification of the submerged coil to prevent microbial carryover error in thermal death studies. J Food Prot 71:775–780

    Article  PubMed  Google Scholar 

  • Kirby RM, Davies R (1990) Survival of dehydrated cells of Salmonella-Typhimurium Lt2 at high-temperatures. J Appl Bacteriol 68:241–246

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Miyamoto T, Hashimoto Y et al (2005) Identification of factors involved in recovery of heat-injured Salmonella Enteritidis. J Food Prot 68(5):932–941

    Article  CAS  PubMed  Google Scholar 

  • Kramer B, Thielmann J (2016) Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J Microbiol Methods 123:24–30

    Article  CAS  PubMed  Google Scholar 

  • Laroche A, Fine F, Gervais P (2005) Water activity affects heat resistance of microorganisms in food powders. Int J Food Microbiol 97:307–315

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Wigren E, Trcek J et al (2015) A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains. Environ Microbiol 17:4511–4526

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Wigren E, Lünsdorf H et al (2016) Protein homeostasis-more than resisting a hot bath. Curr Opin Microbiol 30:147–154

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Franke KB, Kamal SM et al (2018) Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. Proc Natl Acad Sci USA 115(2):E273

    Article  CAS  PubMed  Google Scholar 

  • Leguérinel I, Spegagne I, Couvert O et al (2007) Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella Typhimurium. Int J Food Microbiol 116:88–95

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ganzle M (2016) Some like it hot: heat resistance of Escherichia coli in food. Front Microbiol 7:1763–1769

    PubMed  PubMed Central  Google Scholar 

  • Lianou A, Koutsoumanis KP (2013) Strain variability of the behavior of foodborne bacterial pathogens: a review. Int J Food Microbiol 167:310–321

    Article  PubMed  Google Scholar 

  • Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    Article  CAS  PubMed  Google Scholar 

  • Linton RH, Carter WH, Pierson MD et al (1995) Use of a modified Gompertz Equation to model nonlinear survival curves for Listeria monocytogenes Scott-A. J Food Prot 58:946–954

    Article  CAS  PubMed  Google Scholar 

  • Lund B, Knox M, Cole M (1989) Destruction of Listeria monocytogenes during microwave cooking. Lancet 1:218

    Article  CAS  PubMed  Google Scholar 

  • Lund B, Baird-Parker AC, Baird-Parker TC et al (2000) Microbiological safety and quality of food, vol 1. Springer, New York

    Google Scholar 

  • Ma J, Wang H, Yu L et al (2019) Dynamic self-recovery of injured Escherichia coli O157:H7 induced by high pressure processing. LWT Food Sci Technol 113:108–308

    Article  CAS  Google Scholar 

  • Mackey B (1983) Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation. FEMS Microbiol Lett 20:395–399

    Article  CAS  Google Scholar 

  • Mackey BM (2000) Injured bacteria. In: Lund M, Baird-Parker TC, Gould GW (eds) The microbiological safety, and quality of food. Aspen Publisher, Gaithersburg, pp 315–341

    Google Scholar 

  • Mañas P, Pagán R, Raso J et al (2003) Predicting thermal inactivation in media of different pH of Salmonella grown at different temperatures. Int J Food Microbiol 87:45–53

    Article  PubMed  Google Scholar 

  • Marcén M, Ruiz V, Serrano MJ et al (2017) Oxidative stress in E. coli cells upon exposure to heat treatments. Int J Food Microbiol 241:198–205

    Article  CAS  PubMed  Google Scholar 

  • Mattick K, Jørgensen F, Legan J et al (2000) Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Appl Environ Microbiol 66:4921–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKellar RC, Lu X (2003) Modeling microbial responses in food. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Mercer RG, Zheng J, Garcia-Hernandez R et al (2015) Genetic determinants of heat resistance in Escherichia coli. Front Microbiol 6:932

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercer RM, Walker BD, Yang X et al (2017) The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica, Escherichia coli, and Enterobacter cloacae. Food Microbiol 64:96–103

    Article  CAS  PubMed  Google Scholar 

  • Metselaar KI, Abee T, Zwietering MH et al (2016) Modeling and validation of the ecological behavior of wild-type Listeria monocytogenes and stress-resistant variants. Appl Environ Microbiol 82:5389–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Schwager F, Betton JM et al (1996) Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J 15(24):6899–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moats WA, Dabbah R, Edwards VM (1971) Interpretation of nonlogarithmic survivor curves of heated bacteria. J Food Sci 36:523–526

    Article  Google Scholar 

  • Mogk A, Katikaridis P, Bohl V (2021) Resisting the heat: bacterial disaggregases rescue cells from devastating protein aggregation. Front Mol Biosci 8:320

    Google Scholar 

  • Mohacsi-Farkas C, Farkas J, Meszaros L et al (1999) Thermal denaturation of bacterial cells examined by differential scanning calorimetry. J Therm Anal Calorim 57:409–414

    Article  CAS  Google Scholar 

  • NACMCF (National Advisory Committee on Microbiological Criteria for Foods) (2008) Lethality log reduction in meat food products other than cooked beef

    Google Scholar 

  • Nguyen HT, Corry JE, Miles CA (2006) Heat resistance and mechanism of heat inactivation in thermophilic campylobacters. Appl Environ Microbiol 72:908–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology 145:419–425

    Article  CAS  PubMed  Google Scholar 

  • O’Bryan CA, Crandall PG, Martin EM et al (2006) Heat resistance of Salmonella spp., Listeria monocytogenes, Escherichia coli 0157:H7, and Listeria innocua M1, a potential surrogate for Listeria monocytogenes, in meat and poultry: a review. J Food Sci 71(3):R23–R30

    Article  Google Scholar 

  • Panagiotis, Katikaridis, Lena, et al (2019) ClpG provides increased heat resistance by acting as superior disaggregase. Biomol Ther 9

    Google Scholar 

  • Peleg M (2006) Letter to the editor: on the heat resistance of Salmonella, Listeria, and E. coli O157:H7 in meats and poultry. J Food Sci 71:ix

    Article  Google Scholar 

  • Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci 38:353–380

    Article  CAS  Google Scholar 

  • Pierson MD, Tomlins RI, Ordal ZJ (1971) Biosynthesis during recovery of heat-injured Salmonella Typhimurium. J Bacteriol 105:1234–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts T, Cordier J-L, Gram L et al (2005) Microorganisms in foods 6: microbial ecology of food commodities. Springer, New York, p 1

    Google Scholar 

  • Roncarati D, Scarlato V (2017) Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 41(4):549–574

    Article  CAS  PubMed  Google Scholar 

  • Rowan NJ, Anderson JG (1998) Effects of above-optimum growth temperature and cell morphology on thermotolerance of Listeria monocytogenes cells suspended in bovine milk. Appl Environ Microbiol 64:2065–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuman JD, Sheldon BW, Foegeding PM (1997) Thermal resistance of Aeromonas hydrophila in liquid whole egg. J Food Prot 60:231–236

    Article  PubMed  Google Scholar 

  • Selby K, Mascher G, Somervuo P et al (2017) Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502. PLoS One 12(5):e0176944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva A, Genovés S, Martorell P et al (2015) Sublethal injury and virulence changes in Listeria monocytogenes and Listeria innocua treated with antimicrobials carvacrol and citral. Food Microbiol 50:5–11

    Article  CAS  PubMed  Google Scholar 

  • Skandamis PN, Yoon Y, Stopforth JD et al (2008) Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Food Microbiol 25:294–303

    Article  CAS  PubMed  Google Scholar 

  • Skara T et al (2011) A thermodynamic approach to assess a cellular mechanism of inactivation and the thermal resistance of Listeria innocua. In: Saravacos G et al (eds) 11th International Congress on Engineering and Food, vol 1. Procedia Food Science. Elsevier, New York, pp 972–978

    Google Scholar 

  • Skinner FA, Hugo W (1976) Inhibition and inactivation of vegetative microbes. In: Society for Applied Bacteriology Symposium Series (UK). Academic Press, London

    Google Scholar 

  • Slamti L, Livny J, Waldor MK (2007) Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant. J Bacteriol 189:351–362

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Wouters J, Gahan CG et al (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microb 67:2692–2698

    Article  CAS  Google Scholar 

  • Smelt JPPM, Brul S (2014) Thermal inactivation of microorganisms. Crit Rev Food Sci Nutr 54:1371–1385

    Article  CAS  PubMed  Google Scholar 

  • Soni KA, Nannapaneni R, Tasara T (2011) The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes. Foodborne Pathog Dis 8(8):843–852

    Article  CAS  PubMed  Google Scholar 

  • Sörqvist S (2003) Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet Scand 44:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Stringer SC, George SM, Peck MW (2000) Thermal inactivation of Escherichia coli O157:H7. J Appl Microbiol Symp 88:79S–89S

    Article  Google Scholar 

  • Sumner S, Sandros T, Harmon M et al (1991) Heat resistance of Salmonella Typhimurium and Listeria monocytogenes in sucrose solutions of various water activities. J Food Sci 56:1741–1743

    Article  CAS  Google Scholar 

  • Sun D-W (2012) Thermal food processing: new technologies and quality issues. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Suo BA, Shi CL, Shi XM (2012) Inactivation and occurrence of sublethal injury of Salmonella Typhimurium under mild heat stress in broth. J Verbr Lebensm 7:125–131

    Article  CAS  Google Scholar 

  • Teixeira P, Castro H, Mohácsi-Farkas C et al (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol 83:219–226

    Article  CAS  PubMed  Google Scholar 

  • Teo Y-L, Raynor TJ, Ellajosyula KR et al (1996) Synergistic effect of high temperature and high pH on the destruction of Salmonella Enteritidis and Escherichia coli O157: H7. J Food Prot 59:1023–1030

    Article  PubMed  Google Scholar 

  • Tomlins R, Ordal Z (1976) Thermal injury and inactivation in vegetative bacteria. In: Skinner FA, Hugo WB (eds) Inhibition and inactivation of vegetative microbes, Society of Applied Bacteriology Symposia Series, vol 5. Academic Press, London, pp 135–190

    Google Scholar 

  • Tsuchido T, Katsui N, Takeuchi A et al (1995) Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50:298–303

    Article  Google Scholar 

  • USDA (2005) Risk assessment for the impact of lethality standards on Salmonellosis from ready-to-eat meat and poultry products: Food Safety and Inspection Service, United States Department of Agriculture. http://www.fsis.usda.gov/PDF/Salm_RTE_Risk_Assess_Sep2005.pdf. Accessed 22 May 2021

  • USDA-FSIS (2011) Cooking meat? Check the new recommended temperatures. http://blogs.usda.gov/2011/05/25/cooking-meat-check-the-new-recommended-temperatures/. Accessed 22 May 2021

  • Valdramidis VP, Bernaerts K, Van Impe JF et al (2005) An alternative approach to non-log-linear thermal microbial inactivation: modelling the number of log cycles reduction with respect to temperature. Food Technol Biotechnol 43:321–327

    Google Scholar 

  • Valdramidis VP, Geeraerd AH, Bernaerts K et al (2006) Microbial dynamics versus mathematical model dynamics: the case of microbial heat resistance induction. Innov Food Sci Emerg Technol 7:80–87

    Article  CAS  Google Scholar 

  • Van Asselt ED, Zwietering MH (2006) A systematic approach to determine global thermal inactivation parameters for various food pathogens. Int J Food Microbiol 107:73–82

    Article  PubMed  Google Scholar 

  • van Boekel M (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–159

    Article  PubMed  Google Scholar 

  • Van der Veen S, Hain T, Wouters JA et al (2007) The heat shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology 153:3593–3607

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devlieghere F, Geeraerd A et al (2017) Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface. Int J Food Microbiol 243:70–77

    Article  CAS  PubMed  Google Scholar 

  • Wu V (2008) A review of microbial injury and recovery methods in food. Food Microbiol 25:735–744

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Ingham SC (1997) Increased D-values for Salmonella Enteritidis following heat shock. J Food Prot 60:181–184

    Article  PubMed  Google Scholar 

  • Zhang L, Hou L, Zhang S et al (2020) Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 108(106837)

    Google Scholar 

  • Ziemienowicz A, Skowyra D, Zeilstra-Ryalls J et al (1993) Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. J Biol Chem 268:25425–25431

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M, Miorelli S, Schaffner DW et al (2013) Comparative effect of different test methodologies on Bacillus coagulans spores inactivation kinetics in tomato pulp under isothermal conditions. Int J Food Sci Technol 48:1722–1728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Zhou, J. (2022). Response of Foodborne Pathogens to Thermal Processing. In: Ding, T., Liao, X., Feng, J. (eds) Stress Responses of Foodborne Pathogens. Springer, Cham. https://doi.org/10.1007/978-3-030-90578-1_2

Download citation

Publish with us

Policies and ethics