Skip to main content

Distinguishing and Key Recovery Attacks on the Reduced-Round SNOW-V

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13083))

Included in the following conference series:

Abstract

This paper proposes distinguishing and key recovery attacks on the reduced-round versions of the SNOW-V stream cipher. First, we construct a MILP model to search for integral characteristics using the division property, and find the best integral distinguisher in the 3-, 4-, and 5-round versions with time complexities of \(2^{8}\), \(2^{16}\), and \(2^{48}\), respectively. Next, we construct a bit-level MILP model to efficiently search for differential characteristics, and find the best differential characteristics in the 3- and 4-round versions. These characteristics lead to the 3- and 4-round differential distinguishers with time complexities of \(2^{17}\) and \(2^{97}\), respectively. Then, we consider single-bit and dual-bit differential cryptanalysis, which is inspired by the existing study on Salsa and ChaCha. By carefully choosing the IV values and differences, we observe the best bit-wise differential biases with \(2^{-1.733}\) and \(2^{-17.934}\) in the 4- and 5-round versions, respectively. This is feasible to construct a very practical distinguisher with a time complexity of \(2^{4.466}\) for the 4-round version, and a distinguisher with a time complexity of at least \(2^{36.868}\) for the 5-round version. Finally, we improve the existing differential attack based on probabilistic neutral bits, which is also inspired by the existing study on Salsa and ChaCha. As a result, we present the best key recovery attack on the 4-round version with a time complexity of \(2^{153.97}\) and data complexity of \(2^{26.96}\). Consequently, we significantly improve the existing best attacks in the initialization phase by the designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of Salsa, Chacha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_30

    Chapter  Google Scholar 

  2. Choudhuri, A.K., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symm. Cryptol. 2016(2), 261–287 (2016)

    Google Scholar 

  3. CNET. Logic friday. https://download.cnet.com/Logic-Friday/3000-20415_4-75848245.html/

  4. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher called SNOW-V. IACR Trans. Symm. Cryptol. 2019(3), 1–42 (2019)

    Google Scholar 

  5. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Several MILP-aided attacks against SNOW 2.0. In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 394–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7_20

    Chapter  Google Scholar 

  6. Hoki, J., Isobe, T., Ito, R., Liu, F., Sakamoto, K.: Distinguishing and key recovery attacks on the reduced-round SNOW-V. Cryptology ePrint Archive, Report 2021/546 (2021). https://eprint.iacr.org/2021/546

  7. Gurobi Optimization Inc., Gurobi optimizer 9.0 (2019). http://www.gurobi.com/

  8. Jiao, L., Li, Y., Hao, Y.: A guess-and-determine attack on SNOW-V stream cipher. Comput. J. 63, 1789–1812 (2020)

    Article  MathSciNet  Google Scholar 

  9. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_13

    Chapter  Google Scholar 

  10. Sun, B., et al.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_5

    Chapter  Google Scholar 

  11. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primitives with non-bit-permutation linear layers. IACR Cryptol. ePrint Arch. 2016:811 (2016)

    Google Scholar 

  12. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5

    Chapter  Google Scholar 

  13. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  14. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  15. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

Download references

Acknowledgments

Takanori Isobe is supported by JST, PRESTO Grant Number JPMJPR2031 and SECOM science and technology foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoma Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoki, J., Isobe, T., Ito, R., Liu, F., Sakamoto, K. (2021). Distinguishing and Key Recovery Attacks on the Reduced-Round SNOW-V. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90567-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90566-8

  • Online ISBN: 978-3-030-90567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics