Abstract
With the recent advances in machine learning, data-driven strategies could augment wall modeling in large eddy simulation (LES). In this work, a wall model based on gradient boosted decision trees is presented. The model is trained to learn the boundary layer of a turbulent channel flow so that it can be used to make predictions for significantly different flows where the equilibrium assumptions are valid. The methodology of building the model is presented in detail. The experiment conducted to choose the data for training is described. The trained model is tested a posteriori on a turbulent channel flow and the flow over a wall-mounted hump. The results from the tests are compared with that of an algebraic equilibrium wall model, and the performance is evaluated. The results show that the model has succeeded in learning the boundary layer, proving the effectiveness of our methodology of data-driven model development, which is extendable to complex flows.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(1), 011702 (2012)
Calafell, J., Trias, F.X., Lehmkuhl, O., Oliva, A.: A time-average filtering technique to improve the efficiency of two-layer wall models for large eddy simulation in complex geometries. Comput. Fluids 188, 44–59 (2019)
Piomelli, U.: Wall-layer models for large-eddy simulations. Progr. Aerospace Sci. 44(6), 437–446 (2008). https://doi.org/10.1016/j.paerosci.2008.06.001. www.sciencedirect.com/science/article/pii/S037604210800047X. Large Eddy Simulation-Current Capabilities and Areas of Needed Research
Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annual review of fluid mechanics 34(1), 349–374 (2002)
Larsson, J., Kawai, S., Bodart, J., Bermejo-Moreno, I.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3(1), 15–00418 (2016). https://doi.org/10.1299/mer.15-00418
Bose, S.T., Park, G.I.: Wall-modeled large-eddy simulation for complex turbulent flows. Ann. Rev. Fluid Mech. 50(1), 535–561 (2018). https://doi.org/10.1146/annurev-fluid-122316-045241
Cheng, W., Pullin, D.I., Samtaney, R., Zhang, W., Gao, W.: Large-eddy simulation of flow over a cylinder with \(re_{D}\) from \(3.9\times 10^{3}\) to \(8.5\times 10^{5}\) : a skin-friction perspective. J. Fluid Mech. 820, 121–158 (2017)
Larsson, J., Laurence, S., Bermejo-Moreno, I., Bodart, J., Karl, S., Vicquelin, R.: Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II Combust. Flame 162, 907–920 (2015). Large eddy simulations
Iyer, P.S., Park, G.I., Malik, M.R.: Application of wall-modeled LES to turbulent separated flows. In: APS Division of Fluid Dynamics Meeting Abstracts, APS Meeting Abstracts, p. G33.004, November 2016
Yang, X.I.A., Urzay, J., Bose, S., Moin, P.: Aerodynamic heating in wall-modeled large-eddy simulation of high-speed flows. AIAA J. 56(2), 731–742 (2018)
Yang, X.I.A., Urzay, J., Moin, P.: Heat-transfer rates in equilibrium-wall-modeled les of supersonic turbulent flows. In: Annual Research Briefs, Center for Turbulence Research, pp. 3–15. Stanford University (2016)
Slotnick, J., et al.: CFD vision 2030 study: a path to revolutionary computational aerosciences (2014)
Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)
Tracey, B., Duraisamy, K., Alonso, J.: Application of supervised learning to quantify uncertainties in turbulence and combustion modeling. https://arc.aiaa.org/doi/abs/10.2514/6.2013-259
Tracey, B.D., Duraisamy, K., Alonso, J.J.: A machine learning strategy to assist turbulence model development. In: 53rd AIAA Aerospace Sciences Meeting, p. 1287 (2015)
Duraisamy, K., Zhang, Z.J., Singh, A.P.: New approaches in turbulence and transition modeling using data-driven techniques. In: 53rd AIAA Aerospace Sciences Meeting, p. 1284, (2015)
Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016). https://doi.org/10.1017/jfm.2016.615
Jin-Long, W., Wang, J.-X., Xiao, H.: A Bayesian calibration-prediction method for reducing model-form uncertainties with application in rans simulations. Flow Turbul. Combust. 97(3), 761–786 (2016)
Wang, J.-X., Jin-Long, W., Xiao, H.: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 034603 (2017)
Jin-Long, W., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3(7), 074602 (2018)
King, R.N., Hamlington, P.E., Dahm, W.J.A.: Autonomic closure for turbulence simulations. Phys. Rev. E 93(3), 031301 (2016)
Gamahara, M., Hattori, Y.: Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2(5), 054604 (2017)
Maulik, R., San, O.: A neural network approach for the blind deconvolution of turbulent flows (2017). arXiv preprint: arXiv:1706.00912
Vollant, A., Balarac, G., Corre, C.: Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures. J. Turbul. 18(9), 854–878 (2017)
Zhang, Z.J., Duraisamy, K.: Machine learning methods for data-driven turbulence modeling. In: 22nd AIAA Computational Fluid Dynamics Conference, p. 2460 (2015)
Ma, M., Jiacai, L., Tryggvason, G.: Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system. Phys. Fluids 27(9), 092101 (2015)
Ma, M., Jiacai, L., Tryggvason, G.: Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels. Int. J. Multiphase Flow 85, 336–347 (2016)
Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Ann. Rev. Fluid Mech. 51, 357–377 (2019)
Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 52(1), 477–508 (2020)
Yang, X.I.A., Zafar, S., Wang, J.-X., Xiao, H.: Predictive large-eddy-simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4, 034602 (2019)
Lozano-Durán, A., Bae, H.J.: Self-critical machine-learning wall-modeled les for external aerodynamics (2020). arXiv preprint arXiv:2012.10005
Chen, T., Guestrin, C.: Xgboost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016. https://doi.org/10.1145/2939672.2939785
Owen, H., et al.: Wall-modeled large-eddy simulation in a finite element framework. Int. J. Numer. Methods Fluids. 92, 20–37 (2019). https://doi.org/10.1002/fld.4770
Friedman, J.H.: Stochastic gradient boosting. Comput. Statist. Data Anal. 38(4), 367–378 (2002)
Marusic, I., Monty, J.P., Hultmark, M., Smits, A.J.: On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3 (2013). https://doi.org/10.1017/jfm.2012.511
Vazquez, M., et al.: Alya: multiphysics engineering simulation towards exascale. J. Comput. Sci. 14, 15–27 (2016). https://doi.org/10.1016/j.jocs.2015.12.007. ISSN 1877–7503. www.sciencedirect.com/science/article/pii/S1877750315300521. The Route to Exascale: Novel Mathematical Methods, Scalable Algorithms and Computational Science Skills
Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)
Lehmkuhl, O., Piomelli, U., Houzeaux, G.: On the extension of the integral length-scale approximation model to complex geometries. Int. J. Heat Fluid Flow 78, 108422 (2019)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Poroseva, S.V., Colmenares, J.D.F., Murman, S.M.: On the accuracy of RANs simulations with DNS data. Phys. Fluids 28(11), 115102 (2016)
Thompson, R.L., Sampaio, L.E.B., de Bragança Alves, F.A.V., Thais, L., Mompean, G.: A methodology to evaluate statistical errors in DNS data of plane channel flows. Comput. Fluids 130, 1–7 (2016)
Jinlong, W., Xiao, H., Sun, R., Wang, Q.: Reynolds-averaged Navier-stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned. J. Fluid Mech. 869, 553–586 (2019)
Kawai, S., Larsson, J.: Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24(1), 015105 (2012)
Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to re \(\tau \)= 2003. Phys. fluids 18(1), 011702 (2006)
Rumsey, C.L., Gatski, T.B., Sellers, W.L., Vasta, V.N., Viken, S.A.: Summary of the 2004 computational fluid dynamics validation workshop on synthetic jets. AIAA J. 44(2), 194–207 (2006)
Park, G.I.: Wall-modeled large-eddy simulation of a separated flow over the NASA wall-mounted hump by (2015)
Naughton, J.W., Viken, S., Greenblatt, D.: Skin friction measurements on the NASA hump model. AIAA J. 44(6), 1255–1265 (2006)
Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005)
Acknowledgment
SR acknowledges the financial support by the Ministerio de Ciencia y Innovación y Universidades, for the grant, Ayudas para contratos predoctorales para la formación de doctores(Ref: BES-2017-081982). OL has been partially supported by a Ramon y Cajal postdoctoral contract (Ref: RYC2018-025949-I). We also acknowledge the Barcelona Supercomputing Center for awarding us access to the MareNostrum IV machine based in Barcelona, Spain.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Radhakrishnan, S., Gyamfi, L.A., Miró, A., Font, B., Calafell, J., Lehmkuhl, O. (2021). A Data-Driven Wall-Shear Stress Model for LES Using Gradient Boosted Decision Trees. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(), vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-90539-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90538-5
Online ISBN: 978-3-030-90539-2
eBook Packages: Computer ScienceComputer Science (R0)