Skip to main content

Printable Cement-Based Materials: Fresh Properties Measurements and Control

  • Chapter
  • First Online:
Digital Fabrication with Cement-Based Materials

Abstract

Digital fabrication with cementitious materials is a rapidly growing field of research in which the evolution of strength during the various processes, such as 3D printing, is the key controlling parameter. The strength evolves over multiple orders of magnitude during the process, and thus, it is essential to properly characterize the strength evolution in order to guarantee process success. This chapter summarizes the state of the art in these characterization methods for digital fabrication with fresh cementitious materials, reviewing well-known and more recently developed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfani, R., and Guerrini, G. L. (2005). Rheological test methods for the characterization of extrudable cement-based materials—a review. Materials and Structures, 38, 239–247.

    Google Scholar 

  • Alfani, R., Grizzuti, N., Guerrini, G. L., Lezzi, G. (2007). The use of the capillary rheometer for the rheological evaluation of extrudable cement-based materials. Rheologica acta, 46, 703–709.

    Google Scholar 

  • Assaad, J. J, Harb, J., Maalouf, Y. (2014). Measurement of yield stress of cement pastes using the direct shear test. Journal of Non-Newtonian Fluid Mechanics, 214, 18–27. https://doi.org/10.1016/j.jnnfm.2014.10.009.

  • Assaad, J., Khayat, K. H., and Mesbah, H. (2003a). Assessment of Thixotropy of Flowable and Self-Consolidating Concrete. MJ, 100, 99–107. https://doi.org/10.14359/12548.

  • Assaad, J., Khayat, K. H., and Mesbah, H. (2003b). Variation of Formwork Pressure with Thixotropy of Self-Consolidating Concrete. MJ, 100, 29–37. https://doi.org/10.14359/12460.

  • Barnes, H. A., and Nguyen, Q. D. (2001). Rotating vane rheometry—a review. Journal of Non-Newtonian Fluid Mechanics, 98, 1–14.

    Google Scholar 

  • Banfill, P. F. G., and Kitching, D. R. (1990). 14 USE OF A CONTROLLED STRESS RHEOMETER TO STUDY THE YIELD STRESS OF OILWELL CEMENT SLURRIES. In: Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990. CRC Press, p. 125.

    Google Scholar 

  • Benbow, J., and Bridgwater, J. (1993). Paste flow and extrusion. Oxford Series on Advanced Manufacturing, No. 10, Clarendon Press, Oxford.

    Google Scholar 

  • Bensted, J. (1987). Some applications of conduction calorimetry to cement hydration. Advances in Cement Research, 1, 35–44. https://doi.org/10.1680/adcr.1987.1.1.35.

  • Bonen, Deshpande, Olek, Shen, L., Struble, L., Lange, D., and Khayat, K. (2007). Robustness of Self-Consolidating Concrete. In: Proceedings of the Fifth International RILEM Symposium on Self-compacting Concrete. Ghent, Belgium, pp 33–42.

    Google Scholar 

  • Bouvet, A., Ghorbel, E., and Bennacer, R. (2010). The mini-conical slump flow test: Analysis and numerical study. Cement and Concrete Research, 40, 1517–1523.

    Google Scholar 

  • C01 Committee Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International.

    Google Scholar 

  • C09 Committee Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. ASTM International.

    Google Scholar 

  • Chan, T. W., and Baird, D. G. (2002). An evaluation of a squeeze flow rheometer for the rheological characterization of a filled polymer with a yield stress. Rheologica Acta, 41, 245–256.

    Google Scholar 

  • Chen, Y., Li, Z., Chaves Figueiredo, S., Copuroglu, O., Veer, F., Schlangen, E. (2019). Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development. Applied Sciences, 9, 1809. https://doi.org/10.3390/app9091809.

  • Craipeau, T., Lecompte, T., Toussaint, F., and Perrot, A. (2019). Evolution of Concrete/Formwork Interface in Slipforming Process. In: Wangler, T., Flatt, R. J. (eds) First RILEM International Conference on Concrete and Digital Fabrication—Digital Concrete 2018. Springer International Publishing, pp. 12–23.

    Google Scholar 

  • Choi, M., Roussel, N., Kim, Y., and Kim, J. (2013). Lubrication layer properties during concrete pumping. Cement and Concrete Research, 45, 69–78. https://doi.org/10.1016/j.cemconres.2012.11.001.

  • D18 Committee Test Method for Mechanical Cone Penetration Testing of Soils. ASTM International.

    Google Scholar 

  • D18 Committee Test Method for Moisture Content Penetration Resistance Relationships of Fine-Grained Soils. ASTM International.

    Google Scholar 

  • D18 Committee Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International.

    Google Scholar 

  • D18 Committee Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Cell. ASTM International.

    Google Scholar 

  • D18 Committee Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International.

    Google Scholar 

  • Dressler, I., Freund, N., and Lowke, D. (2020). The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing. Materials, 13, 374. https://doi.org/10.3390/ma13020374.

  • Drewniok, M., Cygan, G., and Gołaszewski, J. (2017). Influence of the Rheological Properties of SCC on the Formwork Pressure. Procedia Engineering, 192, 124–129.

    Google Scholar 

  • De Larrard, F., Sedran, T., Hu, C., et al. (1996). Evolution of the workability of superplasticised concretes: assessment with the BTRHEOM rheometer. In: RILEM PROCEEDINGS, pp. 377–388.

    Google Scholar 

  • EN 14488–2: Testing sprayed concrete—Part 2: Compressive strength of young sprayed concrete.

    Google Scholar 

  • Engmann, J., Servais, C., and Burbidge, A. S. (2005). Squeeze flow theory and applications to rheometry: a review. Journal of Non-newtonian Fluid Mechanics, 132, 1–27.

    Google Scholar 

  • Estellé, P., Lanos, C., Perrot, A., and Amziane, S. (2008). Processing the vane shear flow data from Couette analogy. Applied Rheology, 18, 34037.

    Google Scholar 

  • Estellé, P., Lanos, C., and Perrot, A. (2008). Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. Journal of Non-Newtonian Fluid Mechanics, 154, 31–38.

    Google Scholar 

  • Estellé, P., and Lanos, C. (2012). High torque vane rheometer for concrete: principle and validation from rheological measurements. Applied Rheology, 22, 12881.

    Google Scholar 

  • EN 206–1. Concrete - Part 1: Specification, performance, production and conformity.

    Google Scholar 

  • Flatt, R. J., and Bowen, P. (2006). Yodel: A Yield Stress Model for Suspensions. Journal of the American Ceramic Society, 89, 1244–1256. https://doi.org/10.1111/j.1551-2916.2005.00888.x.

  • Ferraris, C. F., and de Larrard, F. (1998). Modified slump test to measure rheological parameters of fresh concrete. Cement, Concrete and Aggregates, 20, 241–247.

    Google Scholar 

  • Feys, D., Cepuritis, R., Jacobsen, S, Lesage, K., Secrieru, E., and Yahia, A. (2018). Measuring rheological properties of cement pastes: most common techniques, procedures and challenges. RILEM Technical Letters, 2, 129–135.

    Google Scholar 

  • Feys, D., Wallevik, J. E., Yahia, A., Khayat, K., and Wallevik, O. H. (2012). Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Materials and Structures, 46, 289–311. https://doi.org/10.1617/s11527-012-9902-6.

  • Gelardi, G., and Flatt, R. J. (2016). 11 - Working mechanisms of water reducers and superplasticizers. In: Science and Technology of Concrete Admixtures. Woodhead Publishing, pp. 257–278.

    Google Scholar 

  • Händle, F. (2007). Extrusion in ceramics. Springer Science & Business Media.

    Google Scholar 

  • Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosc, F., and Deflorenne, F. (1996). Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. Materials and Structures, 29, 620–631.

    Google Scholar 

  • Jayathilakage, R., Sanjayan, J., and Rajeev, P. (2019). Direct shear test for the assessment of rheological parameters of concrete for 3D printing applications. Mater Struct, 52, 12. https://doi.org/10.1617/s11527-019-1322-4.

  • Khalil, N., Aouad, G., El Cheikh, K., and Rémond, S. (2017). Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Construction and Building Materials, 157, 382–391. https://doi.org/10.1016/j.conbuildmat.2017.09.109.

  • Khayat, K., Schutter, G. D. (2014). Mechanical Properties of Self-Compacting Concrete: State-of-the-Art Report of the RILEM Technical Committee 228-MPS on Mechanical Properties of Self-Compacting Concrete. Springer International Publishing.

    Google Scholar 

  • Kloft, H., Krauss, H. –W., Hack, N., Herrmann, E., Neudecker, S., Varady, P. A., and Lowke, D. (2020). Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP). Cement and Concrete Research, 134, 106078. https://doi.org/10.1016/j.cemconres.2020.106078.

  • Koehler, E. P., Fowler, D. W., Ferraris, C. F., and Amziane, S. (2005). A new, portable rheometer for fresh self-consolidating concrete. ACI SPECIAL PUBLICATIONS, 233, 97.

    Google Scholar 

  • Koehler, E. P., and Fowler, D. W. (2004). Development of a portable rheometer for fresh portland cement concrete. ICAR Research Report-105–3F, University of Texas at Austin.

    Google Scholar 

  • Le Roy, R., and Roussel, N. (2005). The Marsh Cone as a viscometer: theoretical analysis and practical limits. Materials and Structures, 38, 25–30.

    Google Scholar 

  • Lecompte, T., and Perrot, A. (2017). Non-linear modeling of yield stress increase due to SCC structural build-up at rest. Cement and Concrete Research, 92, 92–97. https://doi.org/10.1016/j.cemconres.2016.11.020.

  • Lee, H. K., Lee, K. M., Kim, Y. H., Yim, H., and Bae, D. B. (2004). Ultrasonic in-situ monitoring of setting process of high-performance concrete. Cement and Concrete Research, 34, 631–640. https://doi.org/10.1016/j.cemconres.2003.10.012.

  • Lloret Fritschi, E. (2016). Smart Dynamic Casting—A digital fabrication method for non-standard concrete structures. ETH Zurich.

    Google Scholar 

  • Lloret, E., Shahab, A. R., Linus, M., Flatt, R. J., Gramazio, F., Kohler, M., and Langenberg, S. (2015). Complex concrete structures: Merging existing casting techniques with digital fabrication. Computer-Aided Design, 60, 40–49. https://doi.org/10.1016/j.cad.2014.02.011.

  • Lloret Fritschi, E., Reiter, L., Wangler, T., Gramazio, F., Kohler, M., and Flatt, R. J. (2017). Smart Dynamic Casting: Slipforming with Flexible Formwork—Inline Measurement and Control. In: Proceedings HPC/CIC Tromsø 2017. Norwegian Concrete Association, paper no. 27.

    Google Scholar 

  • Lootens, D., Jousset, P., Martinie, L., Roussel, N., and Flatt, R. J. (2009). Yield stress during setting of cement pastes from penetration tests. Cement and Concrete Research, 39, 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012.

  • Liu, S. H., Sun, D., and Matsuoka, H. (2005). On the interface friction in direct shear test. Computers and Geotechnics, 32, 317–325. https://doi.org/10.1016/j.compgeo.2005.05.002.

  • Mantellato, S., Palacios, M., and Flatt, R. J. (2019) Relating early hydration, specific surface and flow loss of cement pastes. Mater Struct, 52, 5. https://doi.org/10.1617/s11527-018-1304-y.

  • Marchon, D., and Flatt, R. J. (2016). 8 - Mechanisms of cement hydration. In: Aïtcin, P. –C., Flatt, R. J. (eds.) Science and Technology of Concrete Admixtures. Woodhead Publishing, pp. 129–145.

    Google Scholar 

  • Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S., and Ng, S. (2018). Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cement and Concrete Research, 112, 96–110. https://doi.org/10.1016/j.cemconres.2018.05.014.

  • Ma, G., and Wang, L. (2018). A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Frontiers of Structural and Civil Engineering, 12, 382–400.

    Google Scholar 

  • Mahaut, F., Mokéddem, S., Chateau, X., Roussel, N., and Ovarlez, G. (2008). Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research, 38, 1276–1285. https://doi.org/10.1016/j.cemconres.2008.06.001.

  • Ma, S., Qian, Y., and Kawashima, S. (2018). Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research, 108, 1–9.

    Google Scholar 

  • Mostafa, A. M., and Yahia, A. (2016). New approach to assess build-up of cement-based suspensions. Cement and Concrete Research, 85, 174–182. https://doi.org/10.1016/j.cemconres.2016.03.005.

  • Mimoune, M., and Aouadja F. Z. (2004). Rheometrical exploitation of experimental results obtained from new simulation device for extrusion on clay pastes. Materials and Structures, 37, 193–201.

    Google Scholar 

  • Mechtcherine, V., Bos, F. P., Perrot, A., da Silva, W. R. L., Nerella, V. N., Fataei, S., Wolfs, R. J. M., Sonebi, M., and Roussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials—Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, 132, 106037. https://doi.org/10.1016/j.cemconres.2020.106037.

  • Mettler, L. K., Wittel, F. K., Flatt, R. J., and Herrmann, H. J. (2016). Evolution of strength and failure of SCC during early hydration. Cement and Concrete Research, 89, 288–296. https://doi.org/10.1016/j.cemconres.2016.09.004.

  • Myrdal, R. (2007). Accelerating admixtures for concrete. State of the art. SINTEF Building and Infrastructure; COIN - Concrete innovation Centre.

    Google Scholar 

  • Nguyen, T. L. H., Roussel, N., and Coussot, P. (2006). Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid. Cement and Concrete Research, 36, 1789–1796.

    Google Scholar 

  • Nielsson, I., and Wallevik, O. H. (2003). Rheological evaluation of some empirical test methodspreliminary results. In: Third international RILEM symposium, RILEM Pub. PRO, pp. 59–68.

    Google Scholar 

  • Nunes S. da C. B. (2008). Performance-based design of self-compacting concrete (SCC): A contribution to enchance SCC mixtures robustness. Ph.D., Universidade do Porto (Portugal).

    Google Scholar 

  • Obla, K., Lobo, C. (2015). Prescriptive Specifications: A reality check. Concrete International, pp. 29–31.

    Google Scholar 

  • Pashias, N., Boger, D. V., Summers, J., and Glenister, D. J. (1996). A fifty cent rheometer for yield stress measurement. Journal of Rheology, 40, 1179–1189.

    Google Scholar 

  • Perrot, A., Rangeard, D., and Mélinge, Y. (2014). Prediction of the ram extrusion force of cement-based materials. Applied Rheology, 24, 53320.

    Google Scholar 

  • Perrot, A., Mélinge, Y., Estellé, P., Rangeard, D., and Lanos, C. (2011). The back extrusion test as a technique for determining the rheological and tribological behaviour of yield stress fluids at low shear rates. Applied Rheology, 21, 53642.

    Google Scholar 

  • Perrot, A., Mélinge, Y., Rangeard, D., Micaelli, F., Estelle, P., and Lanos, C. (2012). Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica acta, 51, 743–754.

    Google Scholar 

  • Perrot, A., Lecompte, T., Khelifi, H., Brumaud, C., Hot, J., and Roussel, N. (2012). Yield stress and bleeding of fresh cement pastes. Cement and Concrete Research, 42, 937–944. http://dx.doi.org/https://doi.org/10.1016/j.cemconres.2012.03.015.

  • Pierre, A., Perrot, A., Histace, A., Gharsalli, S., and Kadri, E. H. (2016). A study on the limitations of a vane rheometer for mineral suspensions using image processing. Rheologica Acta.

    Google Scholar 

  • Pott, U., Ehm, C., Jakob, C., and Stephan, D. (2020). Investigation of the Early Cement Hydration with a New Penetration Test, Rheometry and In-Situ XRD. In: Mechtcherine, V., Khayat, K., and Secrieru, E. (eds.) Rheology and Processing of Construction Materials. Springer International Publishing, Cham, pp. 246–255.

    Google Scholar 

  • Perrot, A., Rangeard, D., Nerella, V., and Mechtcherine, V. (2019). Extrusion of cement-based materials—an overview. RILEMTechLett 3. https://doi.org/10.21809/rilemtechlett.2018.75.

  • Pierre, A., Lanos, C., and Estellé, P. (2013). Extension of spread-slump formulae for yield stress evaluation. Applied Rheology, 23, 63849.

    Google Scholar 

  • Qian, Y., and Kawashima, S. (2016). Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research, 90, 73–79.

    Google Scholar 

  • Reiter, L., Wangler, T., Roussel, N., and Flatt, R. J. (2018). The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research, 112, 86–95. https://doi.org/10.1016/j.cemconres.2018.05.011.

  • Reiter, L., Wangler, T., Anton, A., and Flatt, R. J. (2020). Setting on demand for digital concrete—Principles, measurements, chemistry, validation. Cement and Concrete Research, 132, 106047. https://doi.org/10.1016/j.cemconres.2020.106047.

  • Reiter, L. (2019). Structural Build-up for Digital Fabrication with Concrete—Materials, Methods, and Processes. ETH Zurich.

    Google Scholar 

  • Reinhardt, H. W., Große, C. U., and Herb, A. T. (2000). Ultrasonic monitoring of setting and hardening of cement mortar—A new device. Mat Struct, 33, 581–583. https://doi.org/10.1007/BF02480539.

  • Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, 36, 1797–1806. https://doi.org/10.1016/j.cemconres.2006.05.025.

  • Roussel, N., and Lanos, C. (2003). Plastic fluid flow parameters identification using a simple squeezing test. Applied Rheology, 13, 132–139.

    Google Scholar 

  • Roussel, N., Lemaître, A., Flatt, R. J., and Coussot, P. (2010). Steady state flow of cement suspensions: A micromechanical state of the art. Cement and Concrete Research, 40, 77–84. https://doi.org/10.1016/j.cemconres.2009.08.026.

  • Roussel, N. (2007). The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC. Materials and Structures, 40, 889–896.

    Google Scholar 

  • Roussel, N. (2005). Steady and transient flow behaviour of fresh cement pastes. Cement and Concrete Research, 35, 1656–1664. https://doi.org/10.1016/j.cemconres.2004.08.001.

  • Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, 36, 1797–1806. http://dx.doi.org/https://doi.org/10.1016/j.cemconres.2006.05.025.

  • Roussel, N. (2011). Understanding the rheology of concrete. Elsevier.

    Google Scholar 

  • Roussel, N. (2018). Rheological requirements for printable concretes. Cement and Concrete Research, 112, 76–85. https://doi.org/10.1016/j.cemconres.2018.04.005.

  • Roussel, N., Bessaies-Bey, H., Kawashima, S., Vasilic, K., and Wolfs, R. J. M. (2019). Recent advances on yield stress and elasticity of fresh cement-based materials. Cement and Concrete Research, 124, 105798. https://doi.org/10.1016/j.cemconres.2019.105798.

  • Roussel, N., and Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49, 705–718. http://dx.doi.org/https://doi.org/10.1122/1.1879041.

  • Roussel, N., Ovarlez, G., Garrault, S., and Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42, 148–157. https://doi.org/10.1016/j.cemconres.2011.09.004.

  • Roussel, N., and Le Roy, R. (2005). The Marsh cone: a test or a rheological apparatus? Cement and Concrete Research, 35, 823–830.

    Google Scholar 

  • Schultz, M. A., and Struble, L. J. (1993). Use of oscillatory shear to study flow behavior of fresh cement paste. Cement and Concrete Research, 23, 273–282.

    Google Scholar 

  • Schutter, G. D., and Feys, D. (2016). Pumping of Fresh Concrete: Insights and Challenges. RILEM Technical Letters, 1, 76–80. https://doi.org/10.21809/rilemtechlett.2016.15.

  • Schultheiss, M., Wangler, T., Reiter, L., Roussel, N., and Flatt, R. J. (2016). Feedback control of Smart Dynamic Casting through formwork friction measurements. In: SCC 2016 - 8th International Rilem Symposium on Self-Compacting Concrete, Flowing toward Sustainability. RILEM Publications, pp. 637–644.

    Google Scholar 

  • Shahab, A., Lloret, E., Fischer, P., Gramazio, F., Kohler, M., and Flatt, R. J. (2014). Smart dynamic casting or how to exploit the liquid to solid transition in cementitious materials. In: Proceedings CD of the 1st International Conference on Rheology and Processing of Construction Materials and of the 7th International Conference on Self-Compacting Concrete. Paris, France.

    Google Scholar 

  • Spangenberg, J., Roussel, N., Hattel, J. H., Stang, H., Skocek, J., and Geiker, M.R. (2012). Flow induced particle migration in fresh concrete: theoretical frame, numerical simulations and experimental results on model fluids. Cement and Concrete Research, 42, 633–641.

    Google Scholar 

  • Thomas, J. J., Jennings, H. M., and Chen, J. J. (2009). Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J Phys Chem C, 113, 4327–4334. https://doi.org/10.1021/jp809811w.

  • Thrane, L. N., Pade, C., and Svensson, T. (2007). Estimation of Bingham rheological parameters of SCC from slump flow measurement. In: 5th International RILEM Symposium on Self-Compacting Concrete. RILEM Publications SARL, pp. 353–358.

    Google Scholar 

  • Thrane, L. N., Pade, C., and Nielsen, C. V. (2009). Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results. Journal of ASTM International, 7, 1–10.

    Google Scholar 

  • Tchamba, J. C., Amziane, S., Ovarlez, G., and Roussel, N. (2008). Lateral stress exerted by fresh cement paste on formwork: Laboratory experiments. Cement and Concrete Research, 38, 459–466. http://dx.doi.org/https://doi.org/10.1016/j.cemconres.2007.11.013.

  • Toutou, Z., Roussel, N., and Lanos, C. (2005). The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research, 35, 1891–1899.

    Google Scholar 

  • Trtnik, G., Turk, G., Kavčič, F., and Bosiljkov, V. B. (2008). Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cement and Concrete Research, 38, 1336–1342. https://doi.org/10.1016/j.cemconres.2008.08.003.

  • Thrane, L. N., Szabo, P., Geiker, M., Glavind, M., and Stang, H. (2004). Simulation of the test method “L-Box” for self-compacting concrete. Annual Transactions of the NORDIC rheology society, 12, 47–54.

    Google Scholar 

  • Utsi, S., Emborg, M., and Carlsward, J. (2003). Relation between workability and rheological parameters. In: Third international RILEM symposium, RILEM Pub. PRO, pp. 154–164.

    Google Scholar 

  • Van Der Vurst, F., Grünewald, S., Feys, D., Lesage, K., Vandewalle, L., Vantomme, J., De Schutter, G. (2017). Effect of the mix design on the robustness of fresh self-compacting concrete. Cement and Concrete Composites 82:190–201. https://doi.org/10.1016/j.cemconcomp.2017.06.005.

  • Wallevik, J. E. (2009). Rheological properties of cement paste: Thixotropic behavior and structural breakdown. Cement and Concrete Research, 39, 14–29. https://doi.org/10.1016/j.cemconres.2008.10.001.

  • Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump. Cement and Concrete Research, 36, 1214–1221.

    Google Scholar 

  • Wangler, T., Lloret, E., Reiter, L., Hack, N., Kohler, M., Bernhard, M., Dillenburger, B., Buchli, J., Roussel, N., and Flatt, R. J. (2016). Digital Concrete: Opportunities and Challenges. RILEM Technical Letters, 1, 67–75. https://doi.org/10.21809/rilemtechlett.2016.16.

  • Wolfs, R. J. M., Bos, F. P., and Salet, T. A. M. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103–116. https://doi.org/10.1016/j.cemconres.2018.02.001.

  • Wallevik, J. E. (2008). Minimizing end-effects in the coaxial cylinders viscometer: Viscoplastic flow inside the ConTec BML Viscometer 3. Journal of Non-Newtonian Fluid Mechanics, 155, 116–123.

    Google Scholar 

  • Wallevik, J. E. (2015). Parallel Plate Based Measuring System for the ConTec Viscometer–Rheological Measurement of Concrete with Dmax 32 mm. Nordic Concrete 50.

    Google Scholar 

  • Wallevik, J. E. (2003). Rheology of particle suspensions: fresh concrete, mortar and cement paste with various types of lignosulfonates. Fakultet for ingeniørvitenskap og teknologi.

    Google Scholar 

  • Wallevik, J. E. (2016). Development of parallel plate-based measuring system for the ConTec viscometer. Newsletter.

    Google Scholar 

  • Wallevik, O. H., Feys, D., Wallevik, J. E., and Khayat, K. H. (2015). Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cement and Concrete Research, 78, 100–109.

    Google Scholar 

  • Wolfs, R. J. M., Bos, F. P., and Salet, T. A. M. (2019). Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cement and Concrete Composites, 104, 103344. https://doi.org/10.1016/j.cemconcomp.2019.103344.

  • Wolfs, R. J. M., Bos, F. P., and Salet, T. A. M. (2018). Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete. Construction and Building Materials, 181, 447–454. https://doi.org/10.1016/j.conbuildmat.2018.06.060.

  • Wadsö, L., Winnefeld, F., Riding, K., Sandberg, P. (2016). Calorimetry. In: A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press, pp. 56–93.

    Google Scholar 

  • Yammine, J., Chaouche, M., Guerinet, M., Moranville, M., and Roussel, N. (2008). From ordinary rhelogy concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions. Cement and Concrete Research, 38, 890–896. https://doi.org/10.1016/j.cemconres.2008.03.011.

  • Yang, M., Neubauer, C. M., and Jennings, H. M. (1997). Interparticle potential and sedimentation behavior of cement suspensions: Review and results from paste. Advanced Cement Based Materials, 5, 1–7. https://doi.org/10.1016/S1065-7355(97)90009-2.

  • Yuan, Q., Zhou, D., Khayat, K. H., Feys, D., and Shi, C. (2017). On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cement and Concrete Research, 99, 183–189.

    Google Scholar 

  • Zhou, X., and Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and structures, 38, 17–24.

    Google Scholar 

  • Zhou, X., Li, Z., Fan, M., and Chen, H. (2013). Rheology of semi-solid fresh cement pastes and mortars in orifice extrusion. Cement and Concrete Composites, 37, 304–311.

    Google Scholar 

  • Zhou, Z., Solomon, M. J., Scales, P. J., and Boger, D. V. (1999). The yield stress of concentrated flocculated suspensions of size distributed particles. Journal of Rheology, 43, 651–671. https://doi.org/10.1122/1.551029.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Wangler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wangler, T. et al. (2022). Printable Cement-Based Materials: Fresh Properties Measurements and Control. In: Roussel, N., Lowke, D. (eds) Digital Fabrication with Cement-Based Materials. RILEM State-of-the-Art Reports, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-90535-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90535-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90534-7

  • Online ISBN: 978-3-030-90535-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics