Skip to main content

How to Tune Your Draggin’: Can Body Language Mitigate Face Threat in Robotic Noncompliance?

  • 917 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13086)

Abstract

When social robots communicate moral norms, such as when rejecting inappropriate commands, humans expect them to do so with appropriate tact. Humans use a variety of strategies to carefully tune their harshness, including variations in phrasing and body language. In this work, we experimentally investigate how robots may similarly use variations in body language to complement changes in the phrasing of moral language.

Keywords

  • Human-robot communication
  • Social and moral norms

Work was supported by AFOSR grant FA9550-20-1-0089 and NSF grant IIS-1849348.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90525-5_21
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-90525-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    This and all other experimental stimuli were captioned.

References

  1. Admoni, H., Weng, T., Hayes, B., Scassellati, B.: Robot nonverbal behavior improves task performance in difficult collaborations. In: Proceedings of HRI (2016)

    Google Scholar 

  2. Arkin, R.C.: Governing lethal behavior: embedding ethics in a hybrid deliberative/reactive robot architecture. Technical Report GIT-GVU-07-11 (2007)

    Google Scholar 

  3. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 1(1), 71–81 (2009)

    CrossRef  Google Scholar 

  4. Bremner, P., Leonards, U.: Iconic gestures for robot avatars, recognition and integration with speech. Front. Psychol. 7, 183 (2016)

    CrossRef  Google Scholar 

  5. Bremner, P., Pipe, A.G., Fraser, M., Subramanian, S., Melhuish, C.: Beat gesture generation rules for human-robot interaction. In: Proceedings of RO-MAN (2009)

    Google Scholar 

  6. Briggs, G., Williams, T., Scheutz, M.: Enabling robots to understand indirect speech acts in task-based interactions. J. Human-Robot Interact. 6(1), 64–94 (2017)

    CrossRef  Google Scholar 

  7. Brooks, A.G., Breazeal, C.: Working with robots and objects: revisiting deictic reference for achieving spatial common ground. In: Proceedings International Conference of HRI (2006)

    Google Scholar 

  8. Brown, P., Levinson, S.C.: Politeness: some universals in language usage. In: Interactional Sociolinguistic. No. 4 (1988)

    Google Scholar 

  9. Cha, E., Kim, Y., Fong, T., Mataric, M.: A survey of nonverbal signaling methods for non-humanoid robots. Fnd. Trend, Rob. 6(4), 211–323 (2018)

    CrossRef  Google Scholar 

  10. Chidambaram, V., Chiang, Y.H., Mutlu, B.: Designing persuasive robots: how robots might persuade people using vocal and nonverbal cues. In: Proceedings of HRI (2012)

    Google Scholar 

  11. Clair, A.S., Mead, R., Matarić, M.J.: Investigating the effects of visual saliency on deictic gesture production by a humanoid robot. In: RO-MAN (2011)

    Google Scholar 

  12. Cormier, D., Newman, G., Nakane, M., Young, J.E., Durocher, S.: Would you do as a robot commands? an obedience study for human-robot interaction. In: International Conference on Human-Agent Interaction (2013)

    Google Scholar 

  13. Dautenhahn, K.: Ants don’t have friends-thoughts on socially intelligent agents. Soc. Intell. Agents, 22–27 (1997)

    Google Scholar 

  14. Feil-Seifer, D., Haring, K.S., Rossi, S., Wagner, A.R., Williams, T.: Where to next? the impact of COVID-19 on human-robot interaction research. In: ACM T-HRI (2020)

    Google Scholar 

  15. Ham, J., Cuijpers, R.H., Cabibihan, J.-J.: Combining robotic persuasive strategies: the persuasive power of a storytelling robot that uses gazing and gestures. Int. J. Soc. Robot. 7(4), 479–487 (2015). https://doi.org/10.1007/s12369-015-0280-4

    CrossRef  Google Scholar 

  16. Herse, S., et al.: Bon Appetit! Robot Persuasion for Food Recommendation. In: Proceedings of HRI (2018)

    Google Scholar 

  17. Huang, C.M., Mutlu, B.: Modeling and evaluating narrative gestures for humanlike robots. In: Robotics: Science & Systems (2013)

    Google Scholar 

  18. Jackson, R.B., Williams, T.: Language-capable robots may inadvertently weaken human moral norms. In: Proceedings of HRI (2019)

    Google Scholar 

  19. Jackson, R.B., Williams, T.: On perceived social and moral agency in natural language capable robots. In: The Dark Side of Human-Robot Interaction (2019)

    Google Scholar 

  20. Jackson, R.B., Williams, T.: A theory of social agency for human-robot interaction. Frontiers in Robotics and AI (2021)

    Google Scholar 

  21. Jackson, R.B., Williams, T., Smith, N.: Exploring the role of gender in perceptions of robotic noncompliance. In: Proceedings of HRI (2020)

    Google Scholar 

  22. JASP Team, et al.: JASP. version 0.8 (2016). Software

    Google Scholar 

  23. Kahn, P.H., et al.: Do people hold a humanoid robot morally accountable for the harm it causes? In: Proceedings of HRI (2012)

    Google Scholar 

  24. Kim, B., Wen, R., Zhu, Q., Williams, T., Phillips, E.: Robots as moral advisors: the effects of deontological, virtue, and confucian role ethics on encouraging honest behavior. In: Companion of HRI (2021)

    Google Scholar 

  25. Liu, P., Glas, D., Kanda, T., Ishiguro, H., Hagita, N.: It’s not polite to point: generating socially-appropriate deictic behaviors towards people. In: HRI (2013)

    Google Scholar 

  26. Lockshin, J., Williams, T.: we need to start thinking ahead: The impact of social context on linguistic norm adherence. In: Proceedings of CogSci (2020)

    Google Scholar 

  27. Malle, B.F., Scheutz, M., Arnold, T., Voiklis, J., Cusimano, C.: Sacrifice one for the good of many?: people apply different moral norms to human and robot agents. In: Proceedings of HRI (2015)

    Google Scholar 

  28. Narahara, H., Maeno, T.: Factors of gestures of robots for smooth communication with humans. In: Proceedings of the 1st international conference on Robot communication and coordination (2009)

    Google Scholar 

  29. Ogawa, K., et al.: Can an android persuade you? In: Geminoid Studies (2018)

    Google Scholar 

  30. Robinette, P., Li, W., Allen, R., Howard, A.M., Wagner, A.R.: Overtrust of robots in emergency evacuation scenarios. In: Proceedings of HRI (2016)

    Google Scholar 

  31. Jackson, R.B., Wen, R., Williams, T.: Tact in noncompliance: the need for pragmatically apt responses to unethical commands. In: Proceedings of AIES (2019)

    Google Scholar 

  32. Salem, M., Rohlfing, K., Kopp, S., Joublin, F.: A friendly gesture: investigating the effect of multimodal robot behavior in human-robot interaction. In: Proceedings of RO-MAN (2011)

    Google Scholar 

  33. Sarathy, V., Tsuetaki, A., Roque, A., Scheutz, M.: Reasoning requirements for indirect speech act interpretation. In: Proceedings of ACL (2020)

    Google Scholar 

  34. Sauppé, A., Mutlu, B.: Robot deictics: how gesture and context shape referential communication. In: Proceedings of HRI. IEEE (2014)

    Google Scholar 

  35. Scassellati, B., Admoni, H., Matarić, M.: Robots for use in autism research. Annu. Rev. Biomed. Eng. 14, 275–294 (2012)

    CrossRef  Google Scholar 

  36. Searle, J.R.: Indirect speech acts. In: Speech acts, pp. 59–82 (1975)

    Google Scholar 

  37. Sharkey, N., Sharkey, A.: The crying shame of robot nannies: an ethical appraisal. In: Machine Ethics and Robot Ethics (2020)

    Google Scholar 

  38. Srinivasan, V., Takayama, L.: Help me please: Robot politeness strategies for soliciting help from people. In: Proceedings of CHI (2016)

    Google Scholar 

  39. Stanton, C.J., Stevens, C.J.: Don’t stare at me: the impact of a humanoid robot’s gaze upon trust during a cooperative human-robot visual task. In: IJSR (2017)

    Google Scholar 

  40. Strohkorb Sebo, S., Traeger, M., Jung, M., Scassellati, B.: The ripple effects of vulnerability: the effects of a robot’s vulnerable behavior on trust in human-robot teams. In: Proceedings of HRI (2018)

    Google Scholar 

  41. Wen, R., Siddiqui, M.A., Williams, T.: Dempster-shafer theoretic learning of indirect speech act comprehension norms. In: Proceedings of AAAI (2020)

    Google Scholar 

  42. Williams, T., Briggs, G., Oosterveld, B., Scheutz, M.: Going beyond command-based instructions: extending robotic natural language interaction capabilities. In: Proceedings of AAAI (2015)

    Google Scholar 

  43. Williams, T., Thames, D., Novakoff, J., Scheutz, M.: Thank you for sharing that interesting fact!: effects of capability and context on indirect speech act use in task-based human-robot dialogue. In: Proceedings of HRI (2018)

    Google Scholar 

  44. Winkle, K., et al.: Effective persuasion strategies for socially assistive robots. In: Proceedings of HRI (2019)

    Google Scholar 

  45. Zhu, Q., Williams, T., Jackson, B., Wen, R.: Blame-laden moral rebukes and the morally competent robot: a confucian ethical perspective. Sci. Eng. Ethics 26(5), 2511–2526 (2020)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Naughton, A., Williams, T. (2021). How to Tune Your Draggin’: Can Body Language Mitigate Face Threat in Robotic Noncompliance?. In: , et al. Social Robotics. ICSR 2021. Lecture Notes in Computer Science(), vol 13086. Springer, Cham. https://doi.org/10.1007/978-3-030-90525-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90525-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90524-8

  • Online ISBN: 978-3-030-90525-5

  • eBook Packages: Computer ScienceComputer Science (R0)