Skip to main content

Hybrid Phosphor Materials for Optoelectronic Application

  • Chapter
  • First Online:
Hybrid Phosphor Materials

Abstract

You might be reading the article on a computer screen or on a book. On both the cases, light is required, be it the light on screen or the light required for reading. You might go to a supermarket and now you may not need to stay in large ques, thanks to the modern laser scanners and barcode readers. You might be browsing the internet, Thanks to the fibre amplifier in optical cables. When you think of hybrid phosphor materials in daily life, you will be able to see many devices helping you directly or indirectly in many ways. This chapter gives a short insight into the Luminescent thin films, Polymer optical amplifiers and LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White, A.M.: Problems in optoelectronic semiconductors. J. Mater. Sci. 10(4), 714–726 (1975). https://doi.org/10.1007/BF00566581

    Article  CAS  Google Scholar 

  2. Fujihara, S.: Luminescent thin films: fundamental aspects and practical applications. Chemical Solution Deposition of Functional Oxide Thin Films, pp. 725–745 (2013)

    Google Scholar 

  3. Huang, X., et al.: Visible-emitting hybrid sol–gel materials comprising lanthanide ions: thin film behaviour and potential use as phosphors for solid-state lighting. New J. Chem. 38(12), 5793–5800 (2014)

    Article  CAS  Google Scholar 

  4. Zhuo, N., Zhang, N., Jiang, T., Chen, P., Wang, H.: Effect of particle sizes and mass ratios of a phosphor on light color performance of a green phosphor thin film and a laminated white light-emitting diode. RSC Adv. 9(47), 27424–27431 (2019)

    Article  CAS  Google Scholar 

  5. Alex, et al.: Substrate temperature induced effect on microstructure, optical and photocatalytic activity of ultrasonic spray pyrolysis deposited MoO3 thin films. Mater. Res. Exp. 6(6), 66421 (2019)

    Google Scholar 

  6. Kang, M.J., Santoro, E.G., Kang, Y.S.: Enhanced efficiency of functional smart window with solar wavelength conversion phosphor-photochromic hybrid film. ACS Omega 3(8), 9505–9512 (2018)

    Article  CAS  Google Scholar 

  7. Gao, R., Yan, D.: Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs. Chem. Commun. 53(39), 5408–5411 (2017)

    Article  CAS  Google Scholar 

  8. Güner, T., Köseoğlu, D., Demir, M.M.: Multilayer design of hybrid phosphor film for application in LEDs. Opt. Mater. 60, 422–430 (2016)

    Article  Google Scholar 

  9. Zhang, Y., Hao, J.: Metal-ion doped luminescent thin films for optoelectronic applications. J. Mater. Chem. C 1(36), 5607–5618 (2013)

    Article  CAS  Google Scholar 

  10. Thomas, K., et al.: Intrinsic red luminescence of Eu3+-activated lanthanum molybdate: insights into the spectroscopic features using Judd–Ofelt theoretical analysis. J. Phys. Chem. Solids 137, 109212 (2020)

    Google Scholar 

  11. Ilmi, R., Anjum, S., Haque, A., Khan, M.S.: A new brilliant red emitting Eu (III) ternary complex and its transparent flexible and photostable poly (urethane) hybrid thin film for optoelectronic applications. J. Photochem. Photobiol. A Chem. 383, 111968 (2019)

    Google Scholar 

  12. Dar, W.A., Iftikhar, K.: Phase controlled colour tuning of samarium and europium complexes and excellent photostability of their PVA encapsulated materials. Structural elucidation, photophysical parameters and the energy transfer mechanism in the Eu 3+ complex by Sparkle/PM3 calc. Dalton Trans. 45(21), 8956–8971 (2016)

    Article  CAS  Google Scholar 

  13. Zhang, X., Liu, W., Wei, G.Z., Banerjee, D., Hu, Z., Li, J.: Systematic approach in designing rare-earth-free hybrid semiconductor phosphors for general lighting applications. J. Am. Chem. Soc. 136(40), 14230–14236 (2014)

    Article  CAS  Google Scholar 

  14. Zhou, G., et al.: Optically modulated ultra-broad-band warm white emission in Mn2+-doped (C6H18N2O2) PbBr 4 hybrid metal halide phosphor. Chem. Mater. 31(15), 5788–5795 (2019)

    Article  CAS  Google Scholar 

  15. Ebrahimi, S., Yarmand, B., Naderi, N.: High-performance UV-B detectors based on MnxZn1-xS thin films modified by bandgap engineering. Sens. Actuators A Phys. 303, 111832 (2020)

    Google Scholar 

  16. Sengupta, D., Miller, S., Marton, Z., Chin, F., Nagarkar, V., Pratx, G.: Bright Lu2O3: Eu thin-film scintillators for high-resolution radioluminescence microscopy. Adv. Healthc. Mater. 4(14), 2064–2070 (2015)

    Article  CAS  Google Scholar 

  17. Nikl, M.: Nanocomposite, Ceramic, and Thin Film Scintillators. CRC Press (2016)

    Google Scholar 

  18. Dujardin, C., et al.: Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)

    Article  CAS  Google Scholar 

  19. Riva, F., Douissard, P.-A., Martin, T., Carlá, F., Zorenko, Y., Dujardin, C.: Epitaxial growth of gadolinium and lutetium-based aluminum perovskite thin films for X-ray micro-imaging applications. CrystEngComm 18(4), 608–615 (2016)

    Article  CAS  Google Scholar 

  20. Choudhury, P.K.: Introductory chapter: a revisit to optical amplifiers. Optical Amplifiers: A Few Different Dimensions, p. 1 (2018)

    Google Scholar 

  21. Bastos, A., et al.: Flexible optical amplifier for visible-light communications based on organic–inorganic hybrids. ACS Omega 3(10), 13772–13781 (2018)

    Article  CAS  Google Scholar 

  22. Grunnet-Jepsen, A., Thompson, C.L., Moerner, W.E.: Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier. Science 277(5325), 549–552 (1997)

    Article  CAS  Google Scholar 

  23. Lawrence, J.R., Turnbull, G.A., Samuel, I.D.W.: Broadband optical amplifier based on a conjugated polymer. Appl. Phys. Lett. 80(17), 3036–3038 (2002)

    Article  CAS  Google Scholar 

  24. Shi, J., Suarez, L.E.A., Yoon, S.J., Varghese, S., Serpa, C., Park, S.Y., Lüer, D., Roca-Sanjuán, D., Milián-Medina, B., Gierschner, J.: Solid state luminescence enhancement in π-conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. J. Phys. Chem. C 121, 23166–23183 (2017)

    Google Scholar 

  25. Sanchez, C., Lebeai, B., Chaput, F., Boilot, J.-P.: Adv. Mater. 15, 1969 (2003)

    Google Scholar 

  26. Carlos, L.D., Ferreira, R.A.S., de Z. Bermudez, V., Ribeiro, S.J.L.: Lanthanide‐containing light‐emitting organic–inorganic hybrids: a bet on the future. Adv. Mater. 21(5), 509–534 (2009)

    Google Scholar 

  27. Bunzli, J.-C.G.: Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110(5), 2729–2755 (2010)

    Article  CAS  Google Scholar 

  28. Carlos, L.D., Ferreira, R.A.S., de Zea Bermudez, V., Julian-Lopez, B., Escribano, P.: Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem. Soc. Rev. 40(2), 536–549 (2011)

    Google Scholar 

  29. Ishigure, T., et al.: Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission. J. Lightwave Technol. 15(11), 2095–2100 (1997)

    Article  CAS  Google Scholar 

  30. Sahar, E., Treves, D.: Excited singlet-state absorption in dyes and their effect on dye lasers. IEEE J. Quantum Electron. 13(12), 962–967 (1977)

    Article  Google Scholar 

  31. Fleming, S.C., Whitley, T.J.: Measurement of pump induced refractive index change in erbium doped fibre amplifier. Electron. Lett. 27(21), 1959–1961 (1991)

    Article  Google Scholar 

  32. Tayaga, A., Koike, Y., Kinoshita, T.: Polymer optical fiber amplifier EJ-I. Appl. Phys. Lett. 63(7), 883–885 (1993)

    Article  Google Scholar 

  33. Karimi, M., Granpayeh, N., Farshi, M.K.M.: Erratum to: analysis and design of a dye-doped polymer optical fiber amplifier. Appl. Phys. B 78(3), 387–396 (2004)

    Article  CAS  Google Scholar 

  34. Arrue, J., Jiménez, F., Ayesta, I., Illarramendi, M.A., Zubia, J.: Polymer-optical-fiber lasers and amplifiers doped with organic dyes. Polymers 3(3), 1162–1180 (2011)

    Article  CAS  Google Scholar 

  35. Kuriki, K., et al.: High-efficiency organic dye-doped polymer optical fiber lasers. Appl. Phys. Lett. 77(3), 331–333 (2000)

    Article  CAS  Google Scholar 

  36. Spelthann, S., et al.: Towards highly efficient polymer fiber laser sources for integrated photonic sensors. Sensors 20(15), 4086 (2020)

    Article  CAS  Google Scholar 

  37. Broadway, C., et al.: A compact polymer optical fibre ultrasound detector. In: Photons Plus Ultrasound: Imaging and Sensing 2016, vol. 9708, p. 970813 (2016)

    Google Scholar 

  38. Rosenthal, A., Razansky, D., Ntziachristos, V.: High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 36(10), 1833–1835 (2011)

    Article  Google Scholar 

  39. Cox, B.T., Beard, P.C.: The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 394–404 (2007)

    Google Scholar 

  40. Lamela, H., Gallego, D., Oraevsky, A.: Optoacoustic imaging using fiber-optic interferometric sensors. Opt. Lett. 34(23), 3695–3697 (2009)

    Article  Google Scholar 

  41. Chen, S.-L., Huang, S.-W., Ling, T., Ashkenazi, S., Guo, L.J.: Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2482–2491 (2009)

    Article  Google Scholar 

  42. Gruen, H., Berer, T., Burgholzer, P., Nuster, R., Paltauf, G.: Three-dimensional photoacoustic imaging using fiber-based line detectors. J. Biomed. Opt. 15(2), 21306 (2010)

    Article  Google Scholar 

  43. Yang, X.H., Wang, L.L.: Fluorescence pH probe based on microstructured polymer optical fiber. Opt. Express 15(25), 16478–16483 (2007)

    Article  CAS  Google Scholar 

  44. Gallego, D., Lamela, H.: High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications. Opt. Lett. 34(12), 1807–1809 (2009)

    Article  CAS  Google Scholar 

  45. Markom, A.M., et al.: Performance comparison of enhanced Erbium–Zirconia–Yttria–Aluminum co-doped conventional erbium-doped fiber amplifiers. Optik 132, 75–79 (2017)

    Article  CAS  Google Scholar 

  46. Fiberlabsus_admin 投稿者: Erbium-Doped Fiber Amplifier (EDFA). Fiberlabs Inc. https://www.fiberlabs.com/glossary/erbium-doped-fiber-amplifier/. Accessed 23 Apr 2021

  47. Fischer, U.H.P., Haupt, M., Joncic, M., Predeep, P.: Optical transmission systems using polymeric fibers. Optoelectronics—Devices and Applications (2011)

    Google Scholar 

  48. Kumi Barimah, E., et al.: Erbium-doped nanoparticle–polymer composite thin films for photonic applications: structural and optical properties. ACS Omega 5(16), 9224–9232 (2020)

    Google Scholar 

  49. Antipov, O., Kuznetsov, M., Tyrtyshnyy, V., Alekseev, D.: Low-threshold mode instability in few-mode Yb3+-doped fiber amplifiers: an overview of recent results. In: Fiber Lasers XVIII: Technology and Systems, vol. 11665, p. 116650T (2021)

    Google Scholar 

  50. Nayak, S.K., Bhuyan, K.C., Mohanty, M.N.: Optical wave guide: fast and secure communication for next-generation technology. Advances in Electronics, Communication and Computing, pp. 227–237. Springer (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, J., Thomas, S.M., Somakumar, A.K., Joseph, B., Kalarikkal, N., Thomas, S. (2022). Hybrid Phosphor Materials for Optoelectronic Application. In: Upadhyay, K., Thomas, S., Tamrakar, R.K. (eds) Hybrid Phosphor Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-90506-4_10

Download citation

Publish with us

Policies and ethics