Skip to main content

Application of Remote Sensing and GIS in Crop Yield Forecasting and Water Productivity

  • Chapter
  • First Online:
Geospatial Technologies for Land and Water Resources Management

Part of the book series: Water Science and Technology Library ((WSTL,volume 103))

Abstract

Sugarcane is one of India's most important cash crops and one of the major crops of Uttarakhand state. Accurate crop yield forecasting is essential for making appropriate government policies. Statistical regression method using meteorological parameters is one of the most widely used crop yield forecasting methods. With the help of statistical regression, it is possible to forecast the sugarcane yield a few months before the harvest. But there is no direct cause–effect relationship between meteorological parameters and crop yield, so uses of other independent parameters can increase the crop yield accuracy. Evapotranspiration is one of the most crucial independent parameters, which can be easily estimated using remote sensing. The benefit of remote sensing over other fields and empirical methods for evapotranspiration is the easy availability of data over a large area as data availability becomes critical in other methods. Crop water efficiency can be easily found by crop water productivity. The developed Sugarcane yield actual evapotranspiration (AET) model using regression techniques for the F2 stage and both with and without AET model for F3 stage except 2019–20 in Haridwar district and the developed sugarcane yield model with and without AET using regression techniques for the F2 and F3 stage in Dehradun district showed a good relationship between predicted and observed values of yield which is below 5% deviation. From the study of crop water productivity, we can easily mark the areas with low water productivity and used different planning to increase the water efficiency to fulfill the need of people in reducing water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatla R, Dani B, Tripathi A (2018) Impact of climate on sugarcane yield over Gorakhpur District, UP using statistical model. Vayu Mandal 44(1):11–22

    Google Scholar 

  • Brar SK, Mahal SS, Brar AS, Vashist KK, Sharma N, Buttar GS (2012) Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agric Water Manag 115:217–222

    Article  Google Scholar 

  • Brauman KA, Siebert S, Foley JA (2013) Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ Res Lett 8(2):024030

    Google Scholar 

  • Department of Agriculture and Farmers Welfare Report, 2017–2018: https://agricoop.nic.in/

  • Doraiswamy PC, Hatfield JL, Jackson TJ, Akhmedov B, Prueger J, Stern A (2004) Crop condition and yield simulations using Landsat and MODIS. Remote Sens Environ 92:548–559

    Article  Google Scholar 

  • FAO (2018) Food and Agricultural Organization Statistical Yearbook 2. http://www.fao.org

  • Gunawardhana M, Silvester E, Jones OA, Grover S (2021) Evapotranspiration and biogeochemical regulation in a mountain peatland: insights from eddy covariance and ionic balance measurements. J Hydrol Reg Stud 36:100851

    Google Scholar 

  • Jayakumar M, Rajavel M, Surendran U (2016) Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. Int J Biometeorol 60(12):1943–1952

    Article  Google Scholar 

  • Johnson DM (2014) An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens Environ 141:116–128

    Article  Google Scholar 

  • Kouadio L, Duveiller G, Djaby B, El Jarroudi M, Defourny P, Tychon B (2012) Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data. Int J Appl Earth Obs Geoinf 18:111–118

    Article  Google Scholar 

  • Liu YJ, Chen J, Pan T (2019) Analysis of changes in reference evapotranspiration, pan evaporation, and actual evapotranspiration and their influencing factors in the North China Plain during 1998–2005. Earth Space Sci 6(8):1366–1377

    Article  Google Scholar 

  • Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y (2011) Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric for Meteorol 151:385–393

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22(1)

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Symposia of the society for experimental biology, vol 19. Cambridge University Press (CUP), Cambridge, pp 205–234

    Google Scholar 

  • Morel J, Todoroff P, Bégué A, Bury A, Martiné JF, Petit M (2014) Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: a case study on Reunion Island. Remote Sens 6(7):6620–6635

    Google Scholar 

  • Mosleh M, Hassan Q (2014) Development of a remote sensing-based “Boro” rice mapping system. Remote Sens 6:1938–1953

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800

    Article  Google Scholar 

  • Mulianga B, Bégué A, Simoes M, Todoroff P (2013) Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. Remote Sens 5(5):2184–2199

    Google Scholar 

  • Naseri H, Parashkoohi MG, Ranjbar I, Zamani DM (2021) Energy-economic and life cycle assessment of sugarcane production in different tillage systems. Energy 217:119252

    Google Scholar 

  • Natarajan R, Subramanian J, Papageorgiou EI (2016) Hybrid learning of fuzzy cognitive maps for sugarcane yield classification. Comput Electron Agric 127:147–157

    Article  Google Scholar 

  • Pareek N, Raverkar KP, Bhatt MK, Kaushik S, Chandra S, Singh G, Joshi HC (2019) Soil nutrient status of Bhabhar and hill areas of Uttarakhand. ENVIS Bull Himalayan Ecol 27

    Google Scholar 

  • Potgieter A, Apan A, Hammer G, Dunn P (2011) Estimating winter crop area across seasons andregions using time-sequential MODIS imagery. Int J Remote Sens 32:4281–4310

    Article  Google Scholar 

  • Rao PK, Rao VV, Venkataratnam L (2002) Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech, 4(3):97–101

    Google Scholar 

  • Rockström J, Lannerstad M, Falkenmark M (2007) Assessing the water challenge of a new green revolution in developing countries. Proc Natl Acad Sci 104(15):6253–6260

    Article  Google Scholar 

  • Seckler D, Amarasinghe U, Molden D, De Silva R, Barker R (1998) World water demand and supply, 1990 to 2025: scenarios and issues. Res Rep19. Int Water Manag Inst Colombo, Sri Lanka

    Google Scholar 

  • Speelman S, D’Haese M, Buysse J, D’Haese L (2008) A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa. Agric Syst 98(1):31–39

    Article  Google Scholar 

  • Suresh KK, Krishna Priya SR (2009) A study on pre-harvest forecast of sugarcane yield using climatic variables. Stat Appl 7&8 (1&2)(New Series):1–8

    Google Scholar 

  • Toung TP, Bhuiyan SI (1994) Innovations towards improving water-use efficiency in Rice. In: Paper presented at the World Bank’s 1994 Water Resource Seminar, Landsdowne, VA, USA, 13–15 Dec 1994

    Google Scholar 

  • Verma AK, Garg PK, Prasad KH, Dadhwal VK, Dubey SK, Kumar A (2021) Sugarcane yield forecasting model based on weather parameters. Sugar Tech 23(1):158–166

    Article  Google Scholar 

  • Vintrou E, Desbrosse A, Bégué A, Traoré S, Baron C, Seen DL (2012) Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int J Appl Earth Obs Geoinf 14:83–93

    Article  Google Scholar 

  • Whitcraft AK, Becker-Reshef I, Justice CO (2014) Agricultural growing season calendars derived from MODIS surface reflectance. Int J Dig Earth. https://doi.org/10.1080/17538947.2014.894147

    Article  Google Scholar 

  • Wisiol K (1987) Choosing a basis for yield forecasts and estimates. In: Wisiol K, Hesketh JD (eds) Plant growth modelling for resource management, vol 1. CRC Press, Boca Raton, pp 75–103

    Google Scholar 

  • Zwart SJ, Bastiaanssen WG (2004) Review of measured crop water productivity values for irrigated wheat, Rice, cotton and maize. Agric Water Manag 69(2):115–133

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Ministry of Earth Science (MoES) for providing the funds and to the Directorate of Agriculture, Uttarakhand, for providing historical crop yield data. We are also grateful to AMFU Roorkee, IIT Roorkee, and Indian Meteorological Department (IMD) for providing weather data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Weather Indices

Weather variable

Weather indices

Unweighted weather indices

Weighted weather indices

Tmax

Z10

Z11

Tmin

Z20

Z21

Rain

Z30

Z31

RHmax

Z40

Z41

RHmin

Z50

Z51

AET

Z60

Z61

Tmax_Tmin

Z120

Z121

Tmax_Rain

Z130

Z131

Tmax_RHmax

Z140

Z141

Tmax_RHmin

Z150

Z151

Tmax_AET

Z160

Z161

Tmin_Rain

Z230

Z231

Tmin_RHmax

Z240

Z241

Tmin_Rhmin

Z250

Z251

Tmin_AET

Z260

Z261

Rain_RHmax

Z340

Z341

Rain_RHmin

Z350

Z351

Rain_AET

Z360

Z361

RHmax_Rhmin

Z450

Z451

RHmax_AET

Z460

Z461

RHmin_AET

Z560

Z561

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhoutika, K., Das, D.P., Kumar, A., Pandey, A. (2022). Application of Remote Sensing and GIS in Crop Yield Forecasting and Water Productivity. In: Pandey, A., Chowdary, V.M., Behera, M.D., Singh, V.P. (eds) Geospatial Technologies for Land and Water Resources Management. Water Science and Technology Library, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-90479-1_13

Download citation

Publish with us

Policies and ethics