Skip to main content

Role of Geospatial Technology for Enhancement of Field Water Use Efficiency

  • Chapter
  • First Online:
Geospatial Technologies for Land and Water Resources Management

Part of the book series: Water Science and Technology Library ((WSTL,volume 103))

  • 529 Accesses

Abstract

Enhancement of water use efficiency in the agricultural field is essential for the sustainable management of water resources. This tedious task can only be possible by either increasing output (crop yield) or by decreasing input (irrigation) as per the water resources engineering perspective. Crop yield is restricted to various factors apart from irrigation viz. nutrient supplement, crop variety, property of soil, soil health, etc., which is challenging to manage. Irrigation can be managed by adopting various agricultural water management techniques (e.g. alternative wet and dry, spate irrigation, deficit irrigation, precision irrigation, etc.) at field or plot scale. However, agricultural water management techniques are challenging to adopt for a regional scale due to the lack of real-time soil moisture and evapotranspiration data. This difficulty can be overcome with the help of Geospatial Technology. In this chapter, a detailed role of remote sensing and GIS to enhance field water use efficiency is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J Irrig Drain Eng 133(4):380–394

    Article  Google Scholar 

  • Allen RG, Raes D, Smith M (1998) crop evapotranspiration: guidelines for computing crop requirements. FAO Irridation and Drainage Paper No. 56. FAO, Rome

    Google Scholar 

  • Amato F, Havel J, Gad AA, El-Zeiny AM (2015) Remotely sensed soil data analysis using artificial neural networks: a case study of El-Fayoum depression, Egypt. ISPRS Int. J. Geo-Inf. 4(2):677–696

    Article  Google Scholar 

  • Bastiaanssen WG, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology 212:198–212

    Article  Google Scholar 

  • Belaqziz S, Khabba S, Er-Raki S, Jarlan L, Le Page M, Kharrou MH, Adnani E, Chehbouni A (2013) A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agric Water Manag 119:1–9

    Article  Google Scholar 

  • Cai X, Hejazi MI, Wang D (2011) Value of probabilistic weather forecasts: Assessment by real-time optimization of irrigation scheduling. J Water Resour Plan Manag 137(5):391–403

    Article  Google Scholar 

  • Cao J, Tan J, Cui Y, Luo Y (2019) Irrigation scheduling of paddy rice using short-term weather forecast data. Agric Water Manag 213:714–723

    Article  Google Scholar 

  • Carlson TN, Gillies RR, Schmugge TJ (1995) An interpretation of methodologies for indirect measurement of soil water content. Agric for Meteorol 77(3–4):191–205

    Article  Google Scholar 

  • Chan SK, Bindlish R, O’Neill PE, Njoku E, Jackson T, Colliander A, Chen F, Burgin M, Dunbar S, Piepmeier J, Yueh S, Entekhabi D, Cosh MH, Caldwell T, Walker J, Wu X, Berg A, Rowlandson T, Pacheco A, McNairn H, Thibeault M, Martinez-Fernandez J, Gonzalez-Zamora A, Seyfried M, Bosch D, Starks P, Goodrich D, Prueger J, Palecki M, Small EE, Zreda M, Calvet JC, Crow WT, Kerr Y (2016) Assessment of the SMAP passive soil moisture product. IEEE Trans Geosci Remote Sens 54(8):4994–5007

    Article  Google Scholar 

  • Choudhury BJ (1989) Estimating evaporation and carbon assimilation using infrared temperature data. In: Asrar G (ed) Vistas in modeling, in theory and applications of optical remote sensing. Wiley, New York, pp 628–690

    Google Scholar 

  • Crapolicchio R, Lecomte P (2004) The ERS-2 scatterometer mission: events and long-loop instrument and data performances assessment. In: Proceedings of the ENVISAT & ERS symposium, pp 6–10

    Google Scholar 

  • Cruz-Blanco M, Lorite IJ, Santos C (2014) An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions. Agric Water Manag 131:135–145

    Article  Google Scholar 

  • Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A, Simonneaux V (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79(1):1–27

    Google Scholar 

  • El-Zeiny AM, Effat HA (2017) Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sens Appl Soc Environ 8:266–277

    Google Scholar 

  • Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, Kimball J, Piepmeier JR, Koster RD, Martin N, McDonald KC, Moghaddam M, Moran S, Reichle R, Shi JC, Spencer MW, Thurman SW, Tsang L, van Zyl J (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Er-Raki S, Chehbouni A, Boulet G, Williams DG (2010) Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric Water Manag 97(11):1769–1778

    Article  Google Scholar 

  • Er-Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric Water Manag 87(1):41–54

    Article  Google Scholar 

  • Gao H, Yan C, Liu Q, Li Z, Yang X, Qi R (2019) Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: a meta-analysis. Agric Water Manag 225:105741

    Google Scholar 

  • Garcia M, Fernandez N, Villagarcia L, Domingo F, Puigdefabregas J, Sandholt I (2014) Accuracy of the temperature-vegetation dryness index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sens Environ 149:100–117

    Article  Google Scholar 

  • Garrison JL, Piepmeier JR, Shah R (2018) Signals of opportunity: enabling new science outside of protected bands. In: 2018 International conference on electromagnetics in advanced applications (ICEAA). IEEE Sept 2018, pp 501–504

    Google Scholar 

  • González-Dugo MP, Mateos L (2008) Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric Water Manag 95(1):48–58

    Article  Google Scholar 

  • Hess T (1996) A microcomputer scheduling program for supplementary irrigation. Comput Electron Agric 15(3):233–243

    Article  Google Scholar 

  • Jackson TJ, Schmugge J, Engman ET (1997) Remote sensing applications to hydrology: soil moisture. Hydrol Sci J 41(4):517–530

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements, vol 1. FAO, Rome, Italy, pp 54–60

    Google Scholar 

  • Jiang L, Islam S (1999) A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett 26(17):2773–2776

    Article  Google Scholar 

  • Jiang L, Islam S (2001) Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour Res 37(2):329–340

    Article  Google Scholar 

  • Jiang L, Islam S (2003) An intercomparison of regional latent heat flux estimation using remote sensing data. Int J Remote Sens 24(11):2221–2236

    Article  Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41(4):495–516

    Article  Google Scholar 

  • Lei F, Crow WT, Kustas WP, Dong J, Yang Y, Knipper KR, Anderson MC, Gao F, Notarnicola C, Greifeneder F, McKee LM (2020) Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sens Environ 239:111622

    Google Scholar 

  • Lesaignoux A, Fabre S, Briottet X (2013) Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain. Int J Remote Sens 34(7):2268–2285

    Google Scholar 

  • Liaqat UW, Choi M, Awan UK (2015) Spatio-temporal distribution of actual evapotranspiration in the Indus Basin Irrigation System. Hydrol Process 29(11):2613–2627

    Article  Google Scholar 

  • Long D, Singh VP (2012) A modified surface energy balance algorithm for land (M‐SEBAL) based on a trapezoidal framework. Water Resour Res 48(2)

    Google Scholar 

  • Lorite IJ, Ramírez-Cuesta JM, Cruz-Blanco M, Santos C (2015) Using weather forecast data for irrigation scheduling under semi-arid conditions. Irrig SCi 33(6):411–427

    Article  Google Scholar 

  • Marino MA, Tracy JC, Taghavi SA (1993) Forecasting of reference crop evapotranspiration. Agric Water Manag 24(3):163–187

    Article  Google Scholar 

  • Minacapilli M, Consoli S, Vanella D, Ciraolo G, Motisi A (2016) A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens Environ 174:10–23

    Article  Google Scholar 

  • Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15(2):453–469

    Article  Google Scholar 

  • Mohanty BP (2013) Soil hydraulic property estimation using remote sensing: a review. Vadose Zone J 12(4):1–9

    Article  MathSciNet  Google Scholar 

  • Moran MS, Jackson RD (1991) Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. J Environ Qual 20(4):725–737

    Article  Google Scholar 

  • Moran MS, Clarke TR, Kustas WP, Weltz M, Amer SA (1994) Evaluation of hydrologic parameters in a semiarid rangeland using remotely sensed spectral data. Water Resour Res 30(5):1287–1297

    Article  Google Scholar 

  • Aayog N (2018). Composite water management index, a tool for water management, June 2018. https://www.niti.gov.in/writereaddata/files/document_publication/2018-05-18-Water-index-Report_vS6B.pdf.

  • Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski JOHN, Torn R, Tanner BCW et al (2003) Remote sensing of surface energy fluxes at 101‐m pixel resolutions. Water Resour Res 39(8)

    Google Scholar 

  • Park J, Baik J, Choi M (2017) Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia. CATENA 156:305–314

    Article  Google Scholar 

  • Patel N, Rajput TBS (2013) Effect of deficit irrigation on crop growth, yield and quality of onion in subsurface drip irrigation. Int J Plant Prod 7(3):417–436

    Google Scholar 

  • Ragab R, Evans JG, Battilani A, Solimando D (2017) Towards accurate estimation of crop water requirement without the crop coefficient Kc: New approach using modern technologies. Irrig Drain 66(4):469–477

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

    Article  Google Scholar 

  • Roerink GJ, Su Z, Menenti M (2000) S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B 25(2):147–157

    Article  Google Scholar 

  • Sadeghi M, Jones SB, Philpot WD (2015) A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens Environ 164:66–76

    Article  Google Scholar 

  • Senay GB (2018) Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration. Appl Eng Agric 34(3):555–566

    Article  Google Scholar 

  • Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–100

    Article  Google Scholar 

  • Sugathan N, Biju V, Renuka G (2014) Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station. J Earth Syst Sci 123(5):1115–1128

    Article  Google Scholar 

  • Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens Environ 101(3):299–314

    Article  Google Scholar 

  • Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S, Figa-Saldana J, De Rosnay P, Jann A, Schneider S, Komma J (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift

    Google Scholar 

  • Wang D, Cai X (2009) Irrigation scheduling—role of weather forecasting and farmers’ behavior. J Water Resour Plan Manag 135(5):364–372

    Article  Google Scholar 

  • Wang Y, Guo T, Qi L, Zeng H, Liang Y, Wei S, Gao F, Wang L, Zhang R, Jia Z (2020) Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency. Agric Water Manag 234:106144

    Google Scholar 

  • Yang Y, Shang S (2013) A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: algorithm and model test. J Geophys Res Atmos 118(5):2284–2300

    Article  Google Scholar 

  • Yueh S, Shah R, Xu X, Elder K, Starr B (2019) Experimental demonstration of soil moisture remote sensing using P-band satellite signals of opportunity. IEEE Geosci Remote Sens Lett 17(2):207–211

    Article  Google Scholar 

  • Zhang D, Zhou G (2016) Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors 16(8):1308

    Article  Google Scholar 

  • Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip Rev Water 3(6):834–853

    Article  Google Scholar 

  • Zhang N, Hong Y, Qin Q, Liu L (2013) VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int J Remote Sens 34(13):4585–4609

    Article  Google Scholar 

  • Zhu W, Jia S, Lv A (2017) A universal Ts-VI triangle method for the continuous retrieval of evaporative fraction from MODIS products. J Geophys Res Atmos 122(19):10–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Senapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senapati, D., Pandey, A. (2022). Role of Geospatial Technology for Enhancement of Field Water Use Efficiency. In: Pandey, A., Chowdary, V.M., Behera, M.D., Singh, V.P. (eds) Geospatial Technologies for Land and Water Resources Management. Water Science and Technology Library, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-90479-1_11

Download citation

Publish with us

Policies and ethics