Skip to main content

Overview of Geospatial Technologies for Land and Water Resources Management

  • Chapter
  • First Online:
Geospatial Technologies for Land and Water Resources Management

Part of the book series: Water Science and Technology Library ((WSTL,volume 103))

Abstract

Land and water resources management are essential for the future sustainability of the environment. The studies on land and water resources require basic geo-referenced data, such as land use-land cover (LULC), soil maps, and digital elevation models (DEMs) for capturing the spatio-temporal variations of thematic layers. These data can be easily obtained from remote sensing images and limited ground truth. Hydro-meteorological data, such as precipitation, air, land surface temperature, solar radiation, evapotranspiration, soil moisture, river and lakes water levels, river discharge, and terrestrial water storage, can also be derived from remote sensing as well as from point-based ground instruments. Then, studies can be carried out at various spatio-temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelen S, Seitz F, Abarca-del-Rio R, Güntner A (2015) Droughts and floods in the La Plata basin in soil moisture data and GRACE. Remote Sens 7(6):7324–7349

    Article  Google Scholar 

  • Albergel C, Dorigo W, Balsamo G, Muñoz-Sabater J, de Rosnay P, Isaksen L, Brocca L, De Jeu R, Wagner W (2013) Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sens Environ 138:77–89

    Article  Google Scholar 

  • Behrangi A, Khakbaz B, Jaw TC, AghaKouchak A, Hsu K, Sorooshian S (2011) Hydrologic evaluation of satellite precipitation products over a mid-size basin. J Hydrol 397(3–4):225–237

    Article  Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, Bagarello V (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):1–13

    Article  Google Scholar 

  • Brisco B, Schmitt A, Murnaghan K, Kaya S, Roth A (2013) SAR polarimetric change detection for flooded vegetation. Int J Digit Earth 6(2):103–114

    Article  Google Scholar 

  • Buchanan GM, Butchart SH, Dutson G, Pilgrim JD, Steininger MK, Bishop KD, Mayaux P (2008) Using remote sensing to inform conservation status assessment: estimates of recent deforestation rates on New Britain and the impacts upon endemic birds. Biol Cons 141(1):56–66

    Article  Google Scholar 

  • Calera A, Campos I, Osann A, D’Urso G, Menenti M (2017) Remote sensing for crop water management: from ET modelling to services for the end users. Sensors 17(5):1104

    Article  Google Scholar 

  • Calvao T, Pessoa MF (2015) Remote sensing in food production—a review. Emirates J Food Agric 27(2(SI)):138–151

    Article  Google Scholar 

  • Chae BG, Park HJ, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21(6):1033–1070

    Article  Google Scholar 

  • Chang KT (2008) Introduction to geographic information systems, vol 4. McGraw-Hill, Boston

    Google Scholar 

  • Chapagain AK, Hoekstra AY (2008) The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water Int 33(1):19–32

    Article  Google Scholar 

  • Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resour Manage 22(12):1783–1798

    Article  Google Scholar 

  • Davis F, Quattrochi D, Ridd M, Lam N, Walsh SJ, Michaelsen JC, Franklin J, Stow DA, Johannsen CJ, Johnston CA (1991) Environmental analysis using integrated GIS and remotely sensed data—some research needs and priorities. Photogramm Eng Remote Sens 57(6):689–697

    Google Scholar 

  • Dayal D, Gupta PK, Pandey A (2021) Streamflow estimation using satellite-retrieved water fluxes and machine learning technique over monsoon-dominated catchments of India. Hydrol Sci J 66(4):656–671

    Article  Google Scholar 

  • Engman ET (1991) Applications of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sens Environ 35(2–3):213–226

    Article  Google Scholar 

  • Fadil A, El Bouchti A (2020) Global data for watershed modeling: the case of data scarcity areas. In: Geospatial Technology. Springer, Cham, pp 1–14

    Google Scholar 

  • Foerster S, Kaden K, Foerster M, Itzerott S (2012) Crop type mapping using spectral–temporal profiles and phenological information. Comput Electron Agric 89:30–40

    Article  Google Scholar 

  • Gajbhiye S, Mishra SK, Pandey A (2014) Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Appl Water Sci 4(1):51–61

    Article  Google Scholar 

  • Gajbhiye S, Mishra SK, Pandey A (2015) Simplified sediment yield index model incorporating parameter curve number. Arab J Geosci 8(4):1993–2004

    Article  Google Scholar 

  • Giacomoni MH, Kanta L, Zechman EM (2013) Complex adaptive systems approach to simulate the sustainability of water resources and urbanization. J Water Resour Plan Manag 139(5):554–564

    Article  Google Scholar 

  • Groot R (1989) Meeting Educational Requirements in Geomatics. ITC J 1:1–4

    Google Scholar 

  • Himanshu SK, Pandey A, Shrestha P (2017) Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environ Earth Sci 76:3. https://doi.org/10.1007/s12665-016-6316-8

    Article  Google Scholar 

  • Himanshu SK, Pandey A, Dayal D (May 2018) Evaluation of satellite-based precipitation estimates over an agricultural watershed of India. In: World Environmental and Water Resources Congress 2018: watershed management, irrigation and drainage, and water resources planning and management. American Society of Civil Engineers, Reston, VA, pp 308–320

    Google Scholar 

  • Himanshu SK, Pandey A, Dayal D (2021) Assessment of multiple satellite-based precipitation estimates over Muneru watershed of India. In: Water management and water governance. Springer, Cham, pp 61–78

    Google Scholar 

  • Himanshu SK, Pandey A, Palmate SS (2015) Derivation of Nash model parameters from geomorphological instantaneous unit hydrograph for a Himalayan river using ASTER DEM. In: Proceedings of international conference on structural architectural and civil engineering, Dubai

    Google Scholar 

  • Hingray B, Picouet C, Musy A (2014) Hydrology: a science for engineers. CRC Press

    Google Scholar 

  • Huang Y, Chen ZX, Tao YU, Huang XZ, Gu XF (2018) Agricultural remote sensing big data: management and applications. J Integr Agric 17(9):1915–1931

    Article  Google Scholar 

  • Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazard 3(6):647–662

    Article  Google Scholar 

  • Jain SK, Singh P, Seth SM (2002) Assessment of sedimentation in Bhakra reservoir in the western Himalayan region using remotely sensed data. Hydrol Sci J 47(2):203–212. https://doi.org/10.1080/02626660209492924

    Article  Google Scholar 

  • Jaiswal RK, Yadav RN, Lohani AK et al (2020) Water balance modeling of Tandula (India) reservoir catchment using SWAT. Arab J Geosci 13:148

    Article  Google Scholar 

  • Kaab A, Huggel C, Fischer L, Guex S, Paul F, Roer I, Salzmann N, Schlaefli S, Schmutz K, Schneider D, Strozzi T (2005) Remote sensing of glacier-and permafrost-related hazards in high mountains: an overview. Nat Hazard 5(4):527–554

    Article  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. Wiley

    Google Scholar 

  • Lo CP, Quattrochi DA, Luvall JC (1997) Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens 18(2):287–304

    Article  Google Scholar 

  • Loew A, Stacke T, Dorigo W, Jeu RD, Hagemann S (2013) Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies. Hydrol Earth Syst Sci 17(9):3523–3542

    Article  Google Scholar 

  • Milewski A, Sultan M, Yan E, Becker R, Abdeldayem A, Soliman F, Gelil KA (2009) A remote sensing solution for estimating runoff and recharge in arid environments. J Hydrol 373(1–2):1–14. https://doi.org/10.1016/j.jhydrol.2009.04.002

    Article  Google Scholar 

  • Muller D, Munroe DK (2014) Current and future challenges in land-use science. J Land Use Sci 9(2):133–142. https://doi.org/10.1080/1747423X.2014.883731

    Article  Google Scholar 

  • Nagaveni C, Kumar KP, Ravibabu MV (2019) Evaluation of TanDEMx and SRTM DEM on watershed simulated runoff estimation. J Earth Syst Sci 128(1):1–11

    Article  Google Scholar 

  • Nair RS, Bharat DA, Nair MG (2013) Impact of climate change on water availability: case study of a small coastal town in India. J Water Clim Change 4(2):146–159

    Article  Google Scholar 

  • Pandey A, Palmate SS (2018) Assessments of spatial land cover dynamic hotspots employing MODIS time-series datasets in the Ken river basin of Central India. Arab J Geosci 11(17):1–8

    Article  Google Scholar 

  • Pandey A, Bishal KC, Kalura P, Chowdary VM, Jha CS, Cerdà A (2021a) A soil water assessment tool (SWAT) modeling approach to prioritize soil conservation management in river basin critical areas coupled with future climate scenario analysis. Air, Soil Water Res 14:11786221211021396

    Article  Google Scholar 

  • Pandey A, Chaube UC, Mishra SK, Kumar D (2016a) Assessment of reservoir sedimentation using remote sensing and recommendations for desilting Patratu reservoir, India. Hydrol Sci J 61(4):711–718

    Article  Google Scholar 

  • Pandey A, Chowdary VM, Mal BC (2004) Morphological analysis and watershed management using GIS. Hydrol J (India) 27(3–4):71–84

    Google Scholar 

  • Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manage 21(4):729–746

    Article  Google Scholar 

  • Pandey A, Chowdary VM, Mal BC (2009a) Sediment yield modelling of an agricultural watershed using MUSLE, remote sensing and GIS. Paddy Water Environ 7(2):105–113

    Article  Google Scholar 

  • Pandey A, Chowdary VM, Mal BC, Dabral PP (2011) Remote sensing and GIS for identification of suitable sites for soil and water conservation structures. Land Degrad Dev 22(3):359–372

    Article  Google Scholar 

  • Pandey A, Gautam AK, Chowdary VM, Jha CS, Cerdà A (2021b) Uncertainty assessment in soil erosion modeling using RUSLE, multisource and multiresolution DEMs. J Indian Soc Remote Sens 49(7):1689–1707

    Article  Google Scholar 

  • Pandey A, Himanshu SK, Mishra SK, Singh VP (2016b) Physically based soil erosion and sediment yield models revisited. CATENA 147:595–620

    Article  Google Scholar 

  • Pandey A, Mathur A, Mishra SK, Mal BC (2009b) Soil erosion modeling of a Himalayan watershed using RS and GIS. Environ Earth Sci 59(2):399–410

    Article  Google Scholar 

  • Pandey RP, Pandey A, Galkate RV, Byun HR, Mal BC (2010) Integrating hydro-meteorological and physiographic factors for assessment of vulnerability to drought. Water Resour Manage 24(15):4199–4217

    Article  Google Scholar 

  • Patel DP, Srivastava PK (2013) Flood hazards mitigation analysis using remote sensing and GIS: correspondence with town planning scheme. Water Resour Manage 27(7):2353–2368

    Article  Google Scholar 

  • Patro S, Chatterjee C, Mohanty S, Singh R, Raghuwanshi NS (2009) Flood inundation modeling using MIKE FLOOD and remote sensing data. J Indian Soc Remote Sens 37(1):107–118

    Article  Google Scholar 

  • Rao KD, Alladi S, Singh A (2019) An integrated approach in developing flood vulnerability index of India using spatial multi-criteria evaluation technique. Curr Sci 117(1):80

    Article  Google Scholar 

  • Robertson L, King DJ (2011) Comparison of pixel-and object-based classification in land cover change mapping. Int J Remote Sens 32(6):1505–1529

    Article  Google Scholar 

  • Sharma I, Mishra SK, Pandey A (2021) A simple procedure for design flood estimation incorporating duration and return period of design rainfall. Arab J Geosci 14(13):1–15

    Article  Google Scholar 

  • Singh G, Pandey A (2021) Mapping Punjab flood using multi-temporal open-access synthetic aperture radar data in Google earth engine. In: Hydrological extremes. Springer, Cham, pp 75–85

    Google Scholar 

  • Singh G, Srivastava HS, Mesapam S, Patel P (2015) Passive microwave remote sensing of soil moisture: a step-by-step detailed methodology using AMSR-E data over Indian sub-continent. Int J Adv Remote Sens GIS 4(1):1045–1063

    Article  Google Scholar 

  • Singh G, Srivastava HS, Mesapam S, Patel P (2019) An attempt to investigate change in crop acreage with soil moisture variations derived from passive microwave data. World Environmental and Water Resources Congress 2019: watershed management, irrigation and drainage, and water resources planning and management. American Society of Civil Engineers, Reston, VA, pp 83–90

    Chapter  Google Scholar 

  • Sivapalan M (2003) Process complexity at hillslope scale, process simplicity at watershed scale: is there a connection? In: EGS-AGU-EUG joint assembly, p 7973

    Google Scholar 

  • Srivastava HS, Patel P, Sharma Y, Navalgund RR (2009) Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Trans Geosci Remote Sens 47(8):2528–2535

    Article  Google Scholar 

  • Stisen S, Jensen KH, Sandholt I, Grimes DI (2008) A remote sensing driven distributed hydrological model of the Senegal river basin. J Hydrol 354(1–4):131–148

    Article  Google Scholar 

  • Swain S, Mishra SK, Pandey A (2021) A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada river basin, India. Environ Earth Sci 80(6):1–15

    Article  Google Scholar 

  • Tarquis A, Gobin A, Semenov MA (2010) Preface. Clim Res 44:1–2. https://doi.org/10.3354//cr00942

    Article  Google Scholar 

  • Thakur PK, Garg V, Kalura P, Agrawal B, Sharma V, Mohapatra M, Kalia M, Aggarwal SP, Calmant S, Ghosh S, Dhote PR (2021) Water level status of Indian reservoirs: a synoptic view from altimeter observations. Adv Space Res 68(2):619–640

    Article  Google Scholar 

  • Ulaby FT (1977) Microwave remote sensing of hydrologic parameters

    Google Scholar 

  • Velmurugan A, Carlos GG (2009) Soil resource assessment and mapping using remote sensing and GIS. J Indian Soc Remote Sens 37(3):511–525

    Article  Google Scholar 

  • Verbyla DL (1995) Satellite remote sensing of natural resources, vol 4. CRC Press

    Google Scholar 

  • Wanders N, Bierkens MF, de Jong SM, de Roo A, Karssenberg D (2014) The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour Res 50(8):6874–6891

    Article  Google Scholar 

  • Wang D, Hubacek K, Shan Y, Gerbens-Leenes W, Liu J (2021) A review of water stress and water footprint accounting. Water 13(2):201

    Article  Google Scholar 

  • Wang D, Laffan SW, Liu Y, Wu L (2010) Morphometric characterisation of landform from DEMs. Int J Geogr Inf Sci 24(2):305–326

    Article  Google Scholar 

  • Wardlow BD, Egbert SL, Kastens JH (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US central great plains. Remote Sens Environ 108(3):290–310

    Article  Google Scholar 

  • Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B, Shi J, Dickinson R (2013) The role of satellite remote sensing in climate change studies. Nat Clim Chang 3(10):875–883

    Article  Google Scholar 

  • Yang L, Meng X, Zhang X (2011) SRTM DEM and its application advances. Int J Remote Sens 32(14):3875–3896

    Article  Google Scholar 

  • Zhou H, Sun J, Turk G, Rehg JM (2007) Terrain synthesis from digital elevation models. IEEE Trans Visual Comput Graphics 13(4):834–848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, A., Singh, G., Chowdary, V.M., Behera, M.D., Prakash, A.J., Singh, V.P. (2022). Overview of Geospatial Technologies for Land and Water Resources Management. In: Pandey, A., Chowdary, V.M., Behera, M.D., Singh, V.P. (eds) Geospatial Technologies for Land and Water Resources Management. Water Science and Technology Library, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-90479-1_1

Download citation

Publish with us

Policies and ethics