Abstract
Cramer, Damgård, and Schoenmakers (CDS) built a proof system to demonstrate the possession of subsets of witnesses for a given collection of statements that belong to a prescribed access structure \(\mathcal {P}\) by composing so-called sigma-protocols for each atomic statement. Their verifier complexity is linear in the size of the monotone span program representation of \(\mathcal {P}\).
We propose an alternative method for combining sigma-protocols into a single non-interactive system for a compound statement in the random oracle model. In contrast to CDS, our verifier complexity is linear in the size of the acyclicity program representation of \(\mathcal {P}\), a complete model of monotone computation introduced in this work. We show that the acyclicity program size of a predicate is polynomially equivalent to the branching-program size of its monotone dual and hence polynomially incomparable to its monotone span program size. We additionally present an extension of our proof system, with verifier complexity linear in the monotone circuit size of \(\mathcal {P}\), in the common reference string model.
Finally, considering the types of statement that naturally reduce to acyclicity programming, we discuss several applications of our new methods to protecting privacy in cryptocurrency and social networks.
Keywords
- sigma-protocols
- Zero-knowledge proofs
- Random oracles
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
A topological sort is a linear ordering of the vertices of the graph satisfying that for every edge (u, v), u comes before v in the ordering.
- 3.
This is a slight abuse of terminology for the sake of readability as validity is not determined by \(\boldsymbol{x}\) and \(\pi \) only, but may also depend on \(\boldsymbol{h}\).
- 4.
For \(\pi = ((a_1, e_1, z_1), \dots , (a_N, e_N, z_N))\) and \(\pi ' = ((a'_1, e'_1, z'_1), \dots , (a'_N, e'_N, z'_N))\).
- 5.
- 6.
The simulator may alternatively choose input \(( pp , 1)\), in both cases the simulation is perfect due to the witness independence property of \(\varUpsilon \).
References
Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive composition of sigma-protocols via Share-then-Hash. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_25
Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November 2017
Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_26
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13
Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part III, volume 10626 of LNCS, pp. 336–365. Springer, Heidelberg (2017)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4
Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs, oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_1
Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. In: Combinatorica, vol. 19, pp. 301–319 (1999). https://doi.org/10.1007/s004930050058
Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_48
Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press, October/November 2006
Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_38
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993
Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30
Cramer, R., Damgård, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_24
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press, November 2019
Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 83–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_4
Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, University of Amsterdam, January 1997
Deshpande, A., Kalai, Y.: Proofs of ignorance and applications to 2-message witness hiding. Cryptology ePrint Archive, Report 2018/896 (2018)
Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR Proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_8
Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317. IEEE Computer Society Press, October 1990
Feng, H., Liu, J., Wu, Q., Li, Y.-N.: Traceable ring signatures with post-quantum security. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 442–468. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_19
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th FOCS, pp. 174–187. IEEE Computer Society Press, October 1986
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret. Appl. Math. 156(16), 3113–3121 (2008)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Grigni, M., Sipser, M.: Monotone complexity, pp. 57–75. In: Proceedings of the London Mathematical Society, Symposium on Boolean Function Complexity (1992)
Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE Computer Society (1993)
Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_5
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based PRFs and applications to E-Cash. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_11
Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arithmetic: practical structure-preserving cryptography. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2057–2074. ACM Press, November 2019
Maxwell, G.: Zero knowledge contingent payment. https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment (2011)
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128. ACM Press, November 2019
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8
Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving cryptographic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 25–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_2
Pitassi, T., Robere, R.: Lifting nullstellensatz to monotone span programs over any field. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 1207–1219. ACM Press, June 2018
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)
Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent. Math. Notes Acad. Sci. USSR 37(6), 485–493 (1985)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)
Tardos, É.: The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica 8(1), 141–142 (1988)
Acknowledgment
We would like to thank Gautam Prakriya for helpful discussions on monotone span programs and Gregory Neven for very fruitful discussions and all his feedback. Finally, we would like to thank all anonymous reviewers for their valuable time and useful comments. The third and fifth authors are supported by Hong Kong RGC GRF grant CUHK 14209419, and ISF grant No. 1399/17 and Project PROMETHEUS (Grant 780701), respectively.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A. (2021). Acyclicity Programming for Sigma-Protocols. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13042. Springer, Cham. https://doi.org/10.1007/978-3-030-90459-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-90459-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90458-6
Online ISBN: 978-3-030-90459-3
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/