Skip to main content

Car Pose Estimation Through Wheel Detection

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13017))

Included in the following conference series:

Abstract

Car pose estimation is an essential part of different applications, including traffic surveillance, Augmented Reality (AR) guides or inductive charging assistance systems. For many systems, the accuracy of the determined pose is important. When displaying AR guides, a small estimation error can result in a different visualization, which will be directly visible to the user. Inductive charging assistance systems have to guide the driver as precise as possible, as small deviations in the alignment of the charging coils can decrease charging efficiency significantly. For accurate pose estimation, matches between image coordinates and 3d real-world points have to be determined. Since wheels are a common feature of cars, we use the wheelbase and rim radius to compute those real-world points. The matching image coordinates are obtained by three different approaches, namely the circular Hough-Transform, ellipse-detection and a neural network. To evaluate the presented algorithms, we perform different experiments: First, we compare their accuracy and time performance regarding wheel-detection in a subset of the images of The Comprehensive Cars (CompCars) dataset [37]. Second, we capture images of a car at known positions, and run the algorithms on these images to estimate the pose of the car. Our experiments show that the neural network based approach is the best in terms of accuracy and speed. However, if training of a neural network is not feasible, both other approaches are accurate alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achler, O., Trivedi, M.M.: Camera based vehicle detection, tracking, and wheel baseline estimation approach. In: ITSC (2004)

    Google Scholar 

  2. Achler, O., Trivedi, M.M.: Vehicle wheel detector using 2d filter banks. In: IV (2004)

    Google Scholar 

  3. Barrois, B., Hristova, S., Wohler, C., Kummert, F., Hermes, C.: 3d pose estimation of vehicles using a stereo camera. In: IV (2009)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: ECCV (2006)

    Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  6. Canny, J.: A Computational Approach to Edge Detection. TPAMI (1986)

    Google Scholar 

  7. Collins, T., Bartoli, A.: Infinitesimal plane-based pose estimation. IJCV (2014)

    Google Scholar 

  8. Davies, E.: A modified hough scheme for general circle location. Pattern Recogn. Lett. 7, 37–43 (1988)

    Article  Google Scholar 

  9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: CoRL (2017)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV (2010)

    Google Scholar 

  11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  12. Grigoryev, A., Bocharov, D., Terekhin, A., Nikolaev, D.: Vision-based vehicle wheel detector and axle counter. In: ECMS (2015)

    Google Scholar 

  13. Hesch, J.A., Roumeliotis, S.I.: A direct least-squares (dls) method for pnp. In: ICCV (2011)

    Google Scholar 

  14. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: ACCV (2013)

    Google Scholar 

  15. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6d object pose estimation. In: CVPR (2019)

    Google Scholar 

  16. Hutter, M., Brewer, N.: Matching 2-d ellipses to 3-d circles with application to vehicle pose identification. In: IVCNZ (2009)

    Google Scholar 

  17. Hödlmoser, M., Micusik, B., Liu, M., Pollefeys, M., Kampel, M.: Classification and pose estimation of vehicles in videos by 3d modeling within discrete-continuous optimization. In: 3DIMPVT (2012)

    Google Scholar 

  18. Illingworth, J., Kittler, J.: The adaptive hough transform. TPAMI (1987)

    Google Scholar 

  19. Kaempchen, N., Franke, U., Ott, R.: Stereo vision based pose estimation of parking lots using 3d vehicle models. In: IV (2002)

    Google Scholar 

  20. Ke, T., Roumeliotis, S.I.: An efficient algebraic solution to the perspective-three-point problem. In: CVPR (2017)

    Google Scholar 

  21. Laan, C.: Real-time 3D car pose estimation trained on synthetic data (2019). https://labs.laan.com/blog/real-time-3d-car-pose-estimation-trained-on-synthetic-data.html. Accessed 16 Feb 2021

  22. Lehrstuhl für Internationales Automobilmanagement, Universität Duisburg-Essen: Taxiladekonzept für Elektrotaxis im öffentlichen Raum. https://talako.uni-due.de/. Accessed 25 Jan 2021

  23. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o(n) solution to the PNP problem. IJCV (2009)

    Google Scholar 

  24. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV (2014)

    Google Scholar 

  25. Lu, C., Xia, S., Shao, M., Fu, Y.: Arc-support line segments revisited: an efficient high-quality ellipse detection. IEEE Trans. Image Process. 29, 768–781 (2020)

    Article  MathSciNet  Google Scholar 

  26. Nilsson, J., Fredriksson, J., Ödblom, A.C.E.: Reliable vehicle pose estimation using vision and a single-track model. T-ITS (2014)

    Google Scholar 

  27. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: pixel-wise voting network for 6dof pose estimation. In: CVPR (2019)

    Google Scholar 

  28. Reddy, N.D., Vo, M., Narasimhan, S.G.: Occlusion-net: 2d/3d occluded keypoint localization using graph networks. In: CVPR (2019)

    Google Scholar 

  29. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018)

    Google Scholar 

  30. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: ICCV (2011)

    Google Scholar 

  31. Shahbaz Nejad, B., Roch, P., Handte, M., Marrón, P.J.: A driver guidance system to support the stationary wireless charging of electric vehicles. In: Advances in Visual Computing (2020)

    Google Scholar 

  32. Terzakis, G., Lourakis, M.: A consistently fast and globally optimal solution to the perspective-n-point problem. In: ECCV (2020)

    Google Scholar 

  33. Vinoharan, V., Ramanan, A., Kodituwakku, S.R.: A wheel-based side-view car detection using snake algorithm. In: ICIAfS (2012)

    Google Scholar 

  34. Welch, G., Bishop, G.: An introduction to the kalman filter (1997)

    Google Scholar 

  35. Gao, X.-S., Hou, X.-R., Tang, J.: Complete solution classification for the perspective-three-point problem. TPAMI, Hang-Fei Cheng (2003)

    Google Scholar 

  36. Xu, G., Su, J., Pan, H., Zhang, D.: A novel method for wheel rim recognition. In: ISECS (2008)

    Google Scholar 

  37. Yang, L., Luo, P., Loy, C.C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: CVPR (2015)

    Google Scholar 

  38. Zakharov, S., Shugurov, I., Ilic, S.: Dpod: 6d pose object detector and refiner. In: ICCV (2019)

    Google Scholar 

  39. Zensors: Car Pose Net (2019). https://www.zensors.com/car-pose/. Accessed 16 Feb 2021

  40. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: CVPR (2004)

    Google Scholar 

  41. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters (2006)

    Google Scholar 

Download references

Acknowledgment

This research is funded by the Bundesministerium für Wirtschaft und Energie as part of the TALAKO project [22] (grant number 01MZ19002A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Roch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roch, P., Shahbaz Nejad, B., Handte, M., Marrón, P.J. (2021). Car Pose Estimation Through Wheel Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics