Skip to main content

Subspace Discrimination Method for Images Using Singular Value Decomposition

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13018))

Included in the following conference series:

  • 888 Accesses

Abstract

In this paper, we introduce the linear subspace method for the second-order tensor. The subspace method based on the principal component analysis for vector data is a conventional and established method for pattern recognition and classification. A pair of orthonormal vector sets derived by the singular value decomposition of matrices provides a pair of linear spaces to express images. The application of the subspace method to a pair of linear subspaces provides recognition methodologies for images through tensor analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mathematical tools in the linear subspace method related to this work are summarised in Appendix.

  2. 2.

    Each orthogonal projection in a linear space defines the corresponding linear subspace. We call this linear subspace the linear subspace defined by the orthogonal projection.

  3. 3.

    If \(\langle \boldsymbol{F},\boldsymbol{G}\rangle =0\), then \(\boldsymbol{F}\) and \(\boldsymbol{G}\) are orthogonal. Since

    $$ \langle \boldsymbol{P}_X\boldsymbol{F}(t)\boldsymbol{Q}_Y^*, \boldsymbol{P}_X^{\perp }\boldsymbol{F}(t)(\boldsymbol{Q}_Y^{\perp })^*\rangle = \langle \boldsymbol{F}(t), \boldsymbol{P}_X^*\boldsymbol{P}_X^{\perp }\boldsymbol{F}(t)(\boldsymbol{Q}_Y^{\perp })^*\boldsymbol{Q}_Y) \rangle =\langle \boldsymbol{F}(t), \boldsymbol{O}\boldsymbol{F}(t)\boldsymbol{O}\rangle , $$

    \(\boldsymbol{P}_X\boldsymbol{F}(t)\boldsymbol{Q}_Y^*\) and \(\boldsymbol{P}_X^{\perp }\boldsymbol{F}(t)(\boldsymbol{Q}_Y^{\perp })^*\) are orthogonal and \(\boldsymbol{P}_X^{\perp }\boldsymbol{F}(t)(\boldsymbol{Q}_Y^{\perp })^*\) is an element in the bilinear space \(\mathbf{\Pi }_X^\perp \times \mathbf{\Pi }_Y^\perp \).

References

  1. Iijima, T.: Pattern Recognition, Corona-sha (1974)

    Google Scholar 

  2. Fukui, K., Maki, A.: Difference subspace and its generalization for subspace-based methods. IEEE Pattern Anal. Mach. Intell. 37, 2164–2177 (2015)

    Article  Google Scholar 

  3. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press (1983)

    Google Scholar 

  4. Gibson, J.J.: The Ecological Approach to Visual Perception, Houghton Mifflin (1979)

    Google Scholar 

  5. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI1981, pp. 674–679 (1981)

    Google Scholar 

  6. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  7. Ohnishi, N., Imiya, A.: Independent component analysis of optical flow for robot navigation. Neurocomputing 71, 2140–2163 (2008)

    Article  Google Scholar 

  8. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: CVPR, pp. 120–130 (2015)

    Google Scholar 

  9. Fan, S., Zhang, Y., Zhang, Y., Fang, Z.: Motion process monitoring using optical flow-based principal component analysis-independent component analysis method. Adv. Mech. Eng. 9, 1–12 (2017)

    Google Scholar 

  10. Horel, J.D.: Complex principal component analysis: theory and examples. J. Appl. Meteorology Climatology 23, 1660–1672 (1984)

    Article  Google Scholar 

  11. Camiz, S., Creta, S.: Principal component analysis of complex data and application to climatology. In: Mola, F., Conversano, C., Vichi, M. (eds.) Classification, (Big) Data Analysis and Statistical Learning. SCDAKO, pp. 77–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55708-3_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(\boldsymbol{P}_1\) and \(\boldsymbol{P}_2\) be the orthogonal projections to the linear subspaces \(\mathbf{\Pi }_1\) and \(\mathbf{\Pi }_2\), respectively. Setting \(\sigma _i\) to be the singular values of \(\boldsymbol{P}_1\boldsymbol{P}_2\) and \(\boldsymbol{P}_2\boldsymbol{P}_1\) such that \(0\le \sigma _1<\sigma _2<\cdots <\sigma _k\), the principal angles between \(\mathbf{\Pi }_1\) and \(\mathbf{\Pi }_2\) are \(\cos ^{-1}\sigma _1>\cos ^{-1}\sigma _2>\cdots > \cos ^{-1}\sigma _k\), and the Grassmann distance along the geodesic between \(\mathbf{\Pi }_1\) and \(\mathbf{\Pi }_2\) is

$$ d(\mathbf{\Pi }_1,\mathbf{\Pi }_2)=\sqrt{\sum _{i=1}^k \theta _i^2} $$

for \(\theta _i=\cos ^{-1}\sigma _i\). For orthonormal bases \(\{\boldsymbol{u}_{1i}\}_{i=1}^m\) and \(\{\boldsymbol{u}_{2j}\}_{j=1}^n\),

$$ \boldsymbol{P}_1=\sum _{i=1}^m \boldsymbol{u}_{1i}\boldsymbol{u}_{1i}^{*}, \, \, \, \boldsymbol{P}_2=\sum _{i=1}^n \boldsymbol{u}_{2i}\boldsymbol{u}_{2i}^{*} $$

are the orthogonal projections to linear subspaces \( \mathbf{\Pi }_1=\mathcal {L}(\{\boldsymbol{u}_{1i}\}_{i=1}^m) \) and \( \mathbf{\Pi }_2=\mathcal {L}(\{\boldsymbol{u}_{2i}\}_{j=1}^n) \), respectively. Since

$$ \boldsymbol{P}_1\boldsymbol{P}_2\boldsymbol{u}_{2i}=(\boldsymbol{u}_{1i}^{*}\boldsymbol{u}_{2i}) \boldsymbol{u}_{1i},\, \, \, \boldsymbol{P}_2\boldsymbol{P}_1\boldsymbol{u}_{1i}=(\boldsymbol{u}_{2i}^{*}\boldsymbol{u}_{1i}) \boldsymbol{u}_{2i}, $$

that is,

$$ \boldsymbol{P}_1\boldsymbol{P}_2\boldsymbol{P}_1\boldsymbol{u}_{1i} =|(\boldsymbol{u}_{1i}^{*}\boldsymbol{u}_{1i})|^2 \boldsymbol{u}_{1i},\, \, \, \boldsymbol{P}_2\boldsymbol{P}_1\boldsymbol{P}_2\boldsymbol{u}_{2i} =|(\boldsymbol{u}_{2i}^{*}\boldsymbol{u}_{1i})|^2 \boldsymbol{u}_{2i}, $$

the principal angles between \(\mathbf{\Pi }_1\) and \(\mathbf{\Pi }_2\) are \(\angle [\boldsymbol{u}_{1i}, \boldsymbol{u}_{2i}] =\cos ^{-1}\sqrt{|(\boldsymbol{u}_{1i}^{*}\boldsymbol{u}_{2i})|^2} \).

Let \(\{\boldsymbol{u}_{ji}\}_{i=1}^{k(j)}\) be orthogonal base sets of linear subspaces \(\mathbf{\Pi }_j\) and \(\boldsymbol{P}_j\) be the orthogonal projection to \(\mathbf{\Pi }_j\) fro \(j=1,2,\cdots , m\). If \(\boldsymbol{w}\in \mathbf{\Pi }_j\), \(\boldsymbol{P}_j\boldsymbol{w}=\boldsymbol{w}\) for \(j=1,2,\cdots ,m\). Therefore, if \(|\boldsymbol{P}_j\boldsymbol{w}-\boldsymbol{w}|^2\ll \epsilon ^2\), then \(\boldsymbol{w}\) lies in a space close to all of \(\{\mathbf{\Pi }_j\}_{j=1}^m\). These geometric conditions imply that the minimiser of

$$ J(\boldsymbol{w})=\sum _{j=1}^m|\boldsymbol{P}_j\boldsymbol{w}-\boldsymbol{w}|^2 $$

is close to all \(\{\mathbf{\Pi }_j\}_{j=1}^m\). The minimiser of \(J(\boldsymbol{w})\) with respect to \(|\boldsymbol{w}|=1\) derives the eigenvalue equation

$$ \sum _{j=1}^m\boldsymbol{P}_j^*\boldsymbol{P}_j\boldsymbol{w}=\lambda \boldsymbol{w}, \, \, \, \, \boldsymbol{P}_j=\sum _{i=1}^{k(j)}\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*}. $$

Since

$$ \boldsymbol{P}_j^*=\sum _{i=1}^{k(j)}(\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*})^*=\sum _{i=1}^{k(j)}\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*}, $$

the relations

$$ \boldsymbol{P}_j^*=\boldsymbol{P}_j, \, \, \, \, \boldsymbol{P}_i^*\boldsymbol{P}_i= \left( \sum _{i=1}^{k(j)}(\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*})^*\right) \left( \sum _{i=1}^{k(j)}\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*}\right) =\sum _{i=1}^{k(j)}\boldsymbol{u}_{ji}\boldsymbol{u}_{ji}^{*} $$

are satisfied. Therefore, the eigenvectors of \(\boldsymbol{A}=\sum _{j=1}^m\boldsymbol{P}_j\) for different eigenvalues are mutually orthogonal and all eigenvalues are nonnegative. Therefore, setting

$$ 0=\lambda _1\le \cdots \le \lambda _k<\lambda _{k+1}<\cdots <\lambda _n, $$

for \(k+1=\min \{ k(1),k(2),\cdots ,k(m)\}\),

$$ \boldsymbol{P}_{\wedge }=\sum _{k=1}^l\boldsymbol{w}_k\boldsymbol{w}_k^*$$

is the orthogonal projection to the linear subspace

$$ \mathbf{\Pi }_{\wedge }= \{ \boldsymbol{x}\, |\, |\boldsymbol{P}_j\boldsymbol{x}-\boldsymbol{x}|\ll \epsilon ^2, \, \, j=1,2,\cdots ,m\} $$

for \(0<\epsilon \ll 1\). The orthogonal projection \(\boldsymbol{P}_{\wedge }\) is the canonical projection to the common linear subspace of \(\{\mathbf{\Pi }_j\}_{j=1}^m\). Therefore, for \(\boldsymbol{x}\in \mathbf{\Pi }_j\), \(\mathbf{\Pi }_{\wedge }\) excludes \(\boldsymbol{y}=(\boldsymbol{I}-\boldsymbol{P}_{\wedge })\boldsymbol{x}\).

Let \(\mathbf{\Pi }\) and \(\mathbf{\Omega }\) be a pair of linear subspace in \(\mathbf{C}^n\) with the condition \(\mathbf{\Pi }\cap \mathbf{\Omega }=\{\boldsymbol{o}\}\). For \(\forall \boldsymbol{p}\in \mathbf{\Pi }\) such that \(\boldsymbol{p}\ne \boldsymbol{o}\) and \(\forall \boldsymbol{q}\in \mathbf{\Omega }\) such that \(\boldsymbol{q}\ne \boldsymbol{o}\), if \(\boldsymbol{p}^*\boldsymbol{q}=0\), \(\mathbf{\Pi }\) and \(\mathbf{\Omega }\) are orthogonal complement each other. Therefore, the relations \(\boldsymbol{p}\ne \mathbf{\Omega }\) and \(\boldsymbol{q}\ne \mathbf{\Pi }\) are satisfied if \(\boldsymbol{p}\in \mathbf{\Pi }\) and \(\boldsymbol{q}\in \mathbf{\Omega }\). We set \(\mathbf{\Omega }^\perp :=\mathbf{\Pi }\) and \(\mathbf{\Pi }^\perp :=\mathbf{\Omega }\). Assuming \(\mathbf{\Pi }\cup \mathbf{\Omega }=\mathbf{C}^n\), \(\boldsymbol{x}\in \mathbf{R}^n\) is uniquely expressed as \(\boldsymbol{x}=\boldsymbol{p}+\boldsymbol{q}\) for \(\boldsymbol{p}\in \mathbf{\Pi }\) and \(\boldsymbol{q}\in \mathbf{\Omega }\). Therefore, using the orthogonal projections \(\boldsymbol{P}_\mathbf{\Pi }\) and \(\boldsymbol{P}_\mathbf{\Omega }=\boldsymbol{I}-\boldsymbol{P}_\mathbf{\Pi }=\boldsymbol{P}_\mathbf{\Pi }^\perp \) to \(\mathbf{\Pi }\) and \(\mathbf{\Omega }\), respectively, \(\boldsymbol{x}\in \mathbf{C}^n\) is uniquely decomposed into \(\boldsymbol{P}_\mathbf{\Pi }\boldsymbol{x}\) and \(\boldsymbol{P}_\mathbf{\Omega }\boldsymbol{x}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mochizuki, E., Sone, H., Itoh, H., Imiya, A. (2021). Subspace Discrimination Method for Images Using Singular Value Decomposition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13018. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90436-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90435-7

  • Online ISBN: 978-3-030-90436-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics