Skip to main content

MOEA/D with Adaptative Number of Weight Vectors

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13082))

Abstract

The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) is a popular algorithm for solving Multi-Objective Problems (MOPs). The main component of MOEA/D is to decompose a MOP into easier sub-problems using a set of weight vectors. The choice of the number of weight vectors significantly impacts the performance of MOEA/D. However, the right choice for this number varies, given different MOPs and search stages. We adaptively change the number of vectors by removing unnecessary vectors and adding new ones in empty areas of the objective space. Our MOEA/D variant uses the Consolidation Ratio to decide when to change the number of vectors and to decide where to add or remove these weighted vectors. We investigate the effects of this adaptive MOEA/D against MOEA/D with a poorly chosen set of vectors, a MOEA/D with fine-tuned vectors and MOEA/D with Adaptive Weight Adjustment on two commonly used benchmark functions. We analyse the algorithms in terms of hypervolume, IGD and entropy performance. Our results show that the proposed method is equivalent to MOEA/D with fine-tuned vectors and superior to MOEA/D with poorly defined vectors. Thus, our adaptive mechanism mitigates problems related to the choice of the number of weight vectors in MOEA/D, increasing the final performance of MOEA/D by filling empty areas of the objective space and avoiding premature stagnation of the search progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the case of discontinuous PF case, there is no need to cover the discontinuity area.

  2. 2.

    https://github.com/YUYUTA/MOEADpy.

  3. 3.

    For the HV calculation, we use the reference point set to (1 + 1/H,1 + 1/H) for two objective problems and (1 + 1/H, 1 + 1/H, 1 + 1/H) for three objective problems.

  4. 4.

    We initialize the weight vectors using the Simplex-lattice Design (SLD) method, causing the number to slightly change between MOPs with 2 and 3 objectives.

References

  1. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

    Article  Google Scholar 

  2. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No.02TH8600), vol. 1, pp. 825–830, (2002). https://doi.org/10.1109/CEC.2002.1007032

  3. Farhang-Mehr, A., Azarm, S.: Diversity assessment of Pareto optimal solution sets: an entropy approach. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No.02TH8600), vol. 1, pp. 723–728. (2002). https://doi.org/10.1109/CEC.2002.1007015

  4. de Farias, L.R.C., Braga, P.H.M., Bassani, H.F., Araújo, A.F.R.: MOEA/D with uniformly randomly adaptive weights. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 641–648. GECCO 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3205455.3205648

  5. Glasmachers, T., Naujoks, B., Rudolph, G.: Start small, grow big? Saving multi-objective function evaluations. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 579–588. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_57

    Chapter  Google Scholar 

  6. Goel, T., Stander, N.: Non-dominance-based online stopping criterion for multi-objective evolutionary algorithms. Int. J. Numer. Meth. Eng. 88, 661–684 (2010)

    Article  Google Scholar 

  7. Jiang, S., et al.: Towards adaptive weight vectors for multiobjective evolutionary algorithm based on decomposition. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 500–507 (2016). https://doi.org/10.1109/CEC.2016.7743835

  8. Lavinas, Y., Aranha, C., Ladeira, M., Campelo, F.: MOEA/D with random partial update strategy. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

    Google Scholar 

  9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009). https://doi.org/10.1109/TEVC.2008.925798

    Article  Google Scholar 

  10. Li, M., Yao, X.: What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation. Evol. Comput. 28(2), 227–253 (2020)

    Article  MathSciNet  Google Scholar 

  11. Ma, X., Yu, Y., Li, X., Qi, Y., Zhu, Z.: A survey of weight vector adjustment methods for decomposition based multi-objective evolutionary algorithms. Evol. Comput. 24(4), 634–649 (2020)

    Article  Google Scholar 

  12. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., We, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

  13. Tanabe, R., Ishibuchi, H., Oyama, A.: Benchmarking multi- and many-objective evolutionary algorithms under two optimization scenarios. IEEE Access 5, 19597–19619 (2017)

    Article  Google Scholar 

  14. Wagner, T., Trautmann, H., Naujoks, B.: OCD: online convergence detection for evolutionary multi-objective algorithms based on statistical testing. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 198–215. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_19

    Chapter  Google Scholar 

  15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  16. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Lavinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lavinas, Y., Teru, A.M., Kobayashi, Y., Aranha, C. (2021). MOEA/D with Adaptative Number of Weight Vectors. In: Aranha, C., Martín-Vide, C., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2021. Lecture Notes in Computer Science(), vol 13082. Springer, Cham. https://doi.org/10.1007/978-3-030-90425-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90425-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90424-1

  • Online ISBN: 978-3-030-90425-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics