Abstract
Marine viruses are considered the most enigmatic form of life in the oceans. They are, simultaneously, agents of chaos and promoters of order. Whether or not they can be considered living entities, they are active agents of infection and drivers of host diversity. Consequently, they modulate the dynamic changes of populations of marine bacteria, archaea, and eukaryotes. Marine viruses are highly abundant, diverse, and active components of marine environments and play a crucial role in the ecology and biogeochemistry of marine ecosystems. Their ecological importance across different marine biomes is attested by the profusion of studies published over the previous decades. Regardless of the substantial scientific output so far, the study on the nature and role of marine viruses is far from exhausted. Novel insights have, concurrently, tested hypotheses, consolidated previously knowledge collected, and pushed forward new lines of research. This chapter describes some of these insights published over the past 5 years, by addressing topics that range across various fields of marine virology.
Keywords
- Bacteriophages
- Marine virome
- Viral metagenomics
- Viral shunt
- Virioplankton
- Viromics
This is a preview of subscription content, access via your institution.
Buying options
References
Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176. https://doi.org/10.1146/annurev-marine-120308-081121
Angly FE, Felts B, Breitbart M et al (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121–2131. https://doi.org/10.1371/journal.pbio.0040368
Avrani S, Lindell D (2015) Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc Natl Acad Sci 112:E2191–E2200. https://doi.org/10.1073/pnas.1420347112
Avrani S, Schwartz DA, Lindell D (2012) Virus-host swinging party in the oceans. Mob Genet Elements 2:88–95. https://doi.org/10.4161/mge.20031
Avrani S, Wurtzel O, Sharon I et al (2011) Genomic island variability facilitates Prochlorococcusvirus coexistence. Nature 474:604–608. https://doi.org/10.1038/nature10172
Aylward FO, Moniruzzaman M (2021) ViralRecall-A flexible command-line tool for the detection of giant virus signatures in ‘omic data. Viruses 13:150. https://doi.org/10.3390/v13020150
Bach LT, Taucher J (2019) CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities. Ocean Sci 15:1159–1175. https://doi.org/10.5194/os-15-1159-2019
Beckett SJ, Weitz JS (2018) The effect of strain level diversity on robust inference of virus-induced mortality of phytoplankton. Front Microbiol 9:1850. https://doi.org/10.3389/fmicb.2018.01850
Bellec L, Clerissi C, Edern R et al (2014) Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol Biol 14:59. https://doi.org/10.1186/1471-2148-14-59
Bohannan BJM, Kerr B, Jessup CM et al (2002) Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 81:107–115. https://doi.org/10.1023/A:1020585711378
Bonnain C, Breitbart M, Buck KN (2016) The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front Mar Sci 3:82. https://doi.org/10.3389/fmars.2016.00082
Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage-host systems from Arctic Sea ice. Extremophiles 7:377–384. https://doi.org/10.1007/s00792-003-0334-7
Breitbart M (2012) Marine viruses: truth or dare. Annu Rev Mar Sci 4:425–448. https://doi.org/10.1146/annurev-marine-120709-142805
Breitbart M, Bonnain C, Malki K, Sawaya NA (2018) Phage puppet masters of the marine microbial realm. Nat Microbiol 3:754–766. https://doi.org/10.1038/s41564-018-0166-y
Breitbart M, Salamon P, Andresen B et al (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci 99:14250–14255. https://doi.org/10.1073/pnas.202488399
Breitbart M, Thompson LR, Suttle CA, Sullivan MB (2007) Exploring the vast diversity of marine viruses. Oceanography 20:135–139. https://doi.org/10.5670/oceanog.2007.58
Brum JR, Cesar Ignacio-Espinoza J, Roux S et al (2015) Patterns and ecological drivers of ocean viral communities. Science 348:1261498. https://doi.org/10.1126/science.1261498
Brussaard CPD, Baudoux AC, Rodríguez-Valera F (2016) Marine viruses. In: Stal LJ, Cretoiu MS (eds) The marine microbiome: An untapped source of biodiversity and biotechnological potential. Springer International Publishing, pp 155–183
Cai L, Jørgensen BB, Suttle CA et al (2019) Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J 13:1857–1864. https://doi.org/10.1038/s41396-019-0397-9
Cai L, Zhang R, He Y et al (2016) Metagenomic analysis of virioplankton of the subtropical Jiulong River estuary, China. Viruses 8:35. https://doi.org/10.3390/v8020035
Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. https://doi.org/10.1038/425365a
Choua M, Bonachela JA (2019) Ecological and evolutionary consequences of viral plasticity. Am Nat 193:346–358. https://doi.org/10.1086/701668
Chow CET, Suttle CA (2015) Biogeography of viruses in the sea. Annu Rev Virol 2:41–66. https://doi.org/10.1146/annurev-virology-031413-085540
Claverie JM (2006) Viruses take center stage in cellular evolution. Genome Biol 7:110. https://doi.org/10.1186/gb-2006-7-6-110
Clerissi C, Desdevises Y, Grimsley N (2012) Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 86:4611–4619. https://doi.org/10.1128/jvi.07221-11
Coutinho FH, Silveira CB, Gregoracci GB et al (2017) Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun 8:15955. https://doi.org/10.1038/ncomms15955
Coy SR, Gann ER, Pound HL et al (2018) Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10:487. https://doi.org/10.3390/v10090487
Crawfurd K, Alvarez-Fernandez S, Mojica K et al (2017) Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea. Biogeosciences 14:3831–3849. https://doi.org/10.5194/bg-14-3831-2017
Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:399–412. https://doi.org/10.4161/viru.27208
D’Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389. https://doi.org/10.1038/sj.embor.7400662
Danovaro R, Corinaldesi C, Dell’Anno A et al (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35:993–1034. https://doi.org/10.1111/j.1574-6976.2010.00258.x
Demory D, Arsenieff L, Simon N et al (2017) Temperature is a key factor in micromonas–virus interactions. ISME J 11:601–612. https://doi.org/10.1038/ismej.2016.160
Du X-P, Cai Z-H, Zuo P et al (2020) Temporal variability of virioplankton during a Gymnodinium catenatum algal bloom. Microorganisms 8:107. https://doi.org/10.3390/microorganisms8010107
Duhaime MB, Sullivan MB (2012) Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 434:181–186. https://doi.org/10.1016/j.virol.2012.09.036
Endo H, Blanc-Mathieu R, Li Y et al (2020) Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol 4:1639–1649. https://doi.org/10.1038/s41559-020-01288-w
Engel A, Bange HW, Cunliffe M et al (2017) The ocean’s vital skin: toward an integrated understanding of the sea surface microlayer. Front Mar Sci 4:165. https://doi.org/10.3389/fmars.2017.00165
Evans C, Payton O, Picco L, Allen M (2018) Algal viruses: the (atomic) shape of things to come. Viruses 10:490. https://doi.org/10.3390/v10090490
Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47. https://doi.org/10.5670/oceanog.2009.95
Feng Y, Chai F, Wells ML et al (2021) The combined effects of increased pCO2 and warming on a coastal phytoplankton assemblage: from species composition to sinking rate. Front Mar Sci 8:622319. https://doi.org/10.3389/fmars.2021.622319
Finke J, Hunt B, Winter C et al (2017) Nutrients and other environmental factors influence virus abundances across oxic and hypoxic marine environments. Viruses 9:152. https://doi.org/10.3390/v9060152
Flaviani F, Schroeder D, Balestreri C et al (2017) A pelagic microbiome (viruses to protists) from a small cup of seawater. Viruses 9:47. https://doi.org/10.3390/v9030047
Flaviani F, Schroeder DC, Lebret K et al (2018) Distinct oceanic microbiomes from viruses to protists located near the Antarctic circumpolar current. Front Microbiol 9:1474. https://doi.org/10.3389/fmicb.2018.01474
Flynn KJ, Kimmance SA, Clark DR et al (2021) Modelling the effects of traits and abiotic factors on viral lysis in phytoplankton. Front Mar Sci 8:460. https://doi.org/10.3389/fmars.2021.667184
Frickel J, Sieber M, Becks L (2016) Eco-evolutionary dynamics in a coevolving host-virus system. Ecol Lett 19:450–459. https://doi.org/10.1111/ele.12580
Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548. https://doi.org/10.1038/21119
Garretto A, Hatzopoulos T, Putonti C (2019) virMine: automated detection of viral sequences from complex metagenomic samples. PeerJ 7:e6695. https://doi.org/10.7717/peerj.6695
Gazitúa MC, Vik DR, Roux S et al (2021) Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J 15:981–998. https://doi.org/10.1038/s41396-020-00825-6
Gran-Stadniczeñko S, Krabberød AK, Sandaa RA et al (2019) Seasonal dynamics of algae-infecting viruses and their inferred interactions with protists. Viruses 11:1043. https://doi.org/10.3390/v11111043
Gregory AC, Zayed AA, Conceição-Neto N et al (2019) Marine DNA viral macro- and microdiversity from pole to pole. Cell 177:1109–1123. https://doi.org/10.1016/j.cell.2019.03.040
Guo J, Bolduc B, Zayed AA et al (2021) VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37. https://doi.org/10.1186/s40168-020-00990-y
Handelsman J (2009) Metagenetics: spending our inheritance on the future. Microb Biotechnol 2:138–139. https://doi.org/10.1111/j.1751-7915.2009.00090_8.x
Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249. https://doi.org/10.1016/S1074-5521(98)90108-9
Handley SA, Virgin HW (2019) Drowning in viruses. Cell 177:1084–1085. https://doi.org/10.1016/j.cell.2019.04.045
Hayes S, Mahony J, Nauta A, van Sinderen D (2017) Metagenomic approaches to assess bacteriophages in various environmental niches. Viruses 9:127. https://doi.org/10.3390/v9060127
Heath S, Knox K, Vale P, Collins S (2017) Virus resistance is not costly in a marine alga evolving under multiple environmental stressors. Viruses 9:39. https://doi.org/10.3390/v9030039
Heinrichs ME, De Corte D, Engelen B, Pan D (2021) An advanced protocol for the quantification of marine sediment viruses via flow cytometry. Viruses 13:102. https://doi.org/10.3390/v13010102
Heinrichs ME, Tebbe DA, Wemheuer B et al (2020) Impact of viral lysis on the composition of bacterial communities and dissolved organic matter in deep-sea sediments. Viruses 12:922. https://doi.org/10.3390/v12090922
Hellweger FL (2020) Combining molecular observations and microbial ecosystem modeling: a practical guide. Annu Rev Mar Sci 12:267–289. https://doi.org/10.1146/annurev-marine-010419-010829
Highfield A, Joint I, Gilbert JA et al (2017) Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment. Viruses 9:41. https://doi.org/10.3390/v9030041
Hoeijmakers WAM, Bártfai R, Françoijs KJ, Stunnenberg HG (2011) Linear amplification for deep sequencing. Nat Protoc 6:1026–1036. https://doi.org/10.1038/nprot.2011.345
Horas EL, Theodosiou L, Becks L (2018) Why are algal viruses not always successful? Viruses 10:474. https://doi.org/10.3390/v10090474
Hurwitz BL, U’Ren JM, Youens-Clark K (2016) Computational prospecting the great viral unknown. FEMS Microbiol Lett 363:fnw077. https://doi.org/10.1093/femsle/fnw077
Jacquet S, Miki T, Noble R et al (2010) Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Adv Oceanogr Limnol 1:97–141. https://doi.org/10.1080/19475721003743843
Jasna V, Parvathi A, Pradeep Ram AS et al (2017) Viral-induced mortality of prokaryotes in a tropical monsoonal estuary. Front Microbiol 8:895. https://doi.org/10.3389/fmicb.2017.00895
Jian H, Yi Y, Wang J et al (2021) Diversity and distribution of viruses inhabiting the deepest ocean on earth. ISME J. https://doi.org/10.1038/s41396-021-00994-y
Jovel J, Patterson J, Wang W et al (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459. https://doi.org/10.3389/fmicb.2016.00459
Jover LF, Effler TC, Buchan A et al (2014) The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol 12:519–528. https://doi.org/10.1038/nrmicro3289
Kaneko H, Blanc-Mathieu R, Endo H et al (2021) Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience 24:102002. https://doi.org/10.1016/j.isci.2020.102002
Kieft K, Zhou Z, Anantharaman K (2020) VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90. https://doi.org/10.1186/s40168-020-00867-0
Kimura K, Tomaru Y (2017) Effects of temperature and salinity on diatom cell lysis by DNA and RNA viruses. Aquat Microb Ecol 79:79–83. https://doi.org/10.3354/ame01818
Knowles B, Silveira CB, Bailey BA et al (2016) Lytic to temperate switching of viral communities. Nature 531:466–470. https://doi.org/10.1038/nature17193
Kranzler CF, Brzezinski MA, Cohen NR et al (2021) Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci 14:231–237. https://doi.org/10.1038/s41561-021-00711-6
Ku C, Ku C, Sheyn U et al (2020) A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv 6:eaba4137. https://doi.org/10.1126/sciadv.aba4137
Labbé M, Raymond F, Lévesque A et al (2018) Communities of phytoplankton viruses across the transition zone of the St. Lawrence estuary. Viruses 10:672. https://doi.org/10.3390/v10120672
Larsen A, Egge JK, Nejstgaard JC et al (2015) Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model. Limnol Oceanogr 60:360–374. https://doi.org/10.1002/lno.10025
Le Quéré C, Andrew RM, Canadell JG et al (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649. https://doi.org/10.5194/essd-8-605-2016
Lennon JT, Khatana SAM, Marston MF, Martiny JBH (2007) Is there a cost of virus resistance in marine cyanobacteria? ISME J 1:300–312. https://doi.org/10.1038/ismej.2007.37
Li Y, Hingamp P, Watai H et al (2018) Degenerate PCR primers to reveal the diversity of giant viruses in coastal waters. Viruses 10:496. https://doi.org/10.3390/v10090496
Lima-Mendez G, Faust K, Henry N et al (2015) Determinants of community structure in the global plankton interactome. Science 348:1262073. https://doi.org/10.1126/science.1262073
Lindemann C, Aksnes DL, Flynn KJ, Menden-Deuer S (2017) Editorial: modeling the plankton-enhancing the integration of biological knowledge and mechanistic understanding. Front Mar Sci 4:358. https://doi.org/10.3389/fmars.2017.00358
Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74:363–377. https://doi.org/10.1128/mmbr.00007-10
Maat D, Biggs T, Evans C et al (2017) Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9:134. https://doi.org/10.3390/v9060134
Maat DS, Brussaard CPD (2016) Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Microb Ecol 77:87–97. https://doi.org/10.3354/ame01791
Maat DS, Prins MA, Brussaard CPD (2019) Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses 11:123. https://doi.org/10.3390/v11020123
Malits A, Boras JA, Balagué V et al (2021) Viral-mediated microbe mortality modulated by ocean acidification and eutrophication: consequences for the carbon fluxes through the microbial food web. Front Microbiol 12:635821. https://doi.org/10.3389/fmicb.2021.635821
Manea E, Dell’anno A, Rastelli E et al (2019) Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front Microbiol 10:1952. https://doi.org/10.3389/fmicb.2019.01952
Marston MF, Pierciey FJ, Shepard A et al (2012) Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci 109:4544–4549. https://doi.org/10.1073/pnas.1120310109
Mateus MD (2017) Bridging the gap between knowing and modeling viruses in marine systems-an upcoming frontier. Front Mar Sci 3:284. https://doi.org/10.3389/FMARS.2016.00284
McMinn A, Liang Y, Wang M (2020) Minireview: the role of viruses in marine photosynthetic biofilms. Mar Life Sci Technol 2:203–208. https://doi.org/10.1007/s42995-020-00042-2
Meyer JR, Agrawal AA, Quick RT et al (2010) Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. Evolution 64:3024–3034. https://doi.org/10.1111/j.1558-5646.2010.01049.x
Middelboe M, Brussaard CPD (2017) Marine viruses: key players in marine ecosystems. Viruses 9:302. https://doi.org/10.3390/v9100302
Mojica KDA, Brussaard CPD (2014) Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol 89:495–515. https://doi.org/10.1111/1574-6941.12343
Mojica KDA, Brussaard CPD (2020) Significance of viral activity for regulating heterotrophic prokaryote community dynamics along a meridional gradient of stratification in the Northeast Atlantic Ocean. Viruses 12:1293. https://doi.org/10.3390/v12111293
Mordecai GJ, Verret F, Highfield A, Schroeder DC (2017) Schrödinger’s Cheshire cat: are haploid Emiliania huxleyi cells resistant to viral infection or not? Viruses 9:51. https://doi.org/10.3390/v9030051
Nagasaki K, Yamaguchi M (1998) Effect of temperature on the algicidal activity and the stability of HaV (Heterosigma akashiwo virus). Aquat Microb Ecol 15:211–216. https://doi.org/10.3354/ame015211
Peck KM, Lauring AS (2018) Complexities of viral mutation rates. J Virol 92:e01031–e01017. https://doi.org/10.1128/JVI.01031-17
Piedade GJ, Wesdorp EM, Montenegro-Borbolla E et al (2018) Influence of irradiance and temperature on the virus mpov-45t infecting the arctic picophytoplankter Micromonas polaris. Viruses 10:676. https://doi.org/10.3390/v10120676
Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62. https://doi.org/10.1038/343060a0
Prodinger F, Endo H, Gotoh Y et al (2020) An optimized metabarcoding method for Mimiviridae. Microorganisms 8:506. https://doi.org/10.3390/microorganisms8040506
Rahlff J (2019) The virioneuston: a review on viral–bacterial associations at air–water interfaces. Viruses 11:191. https://doi.org/10.3390/v11020191
Record NR, Talmy D, Våge S (2016) Quantifying tradeoffs for marine viruses. Front Mar Sci 3:251. https://doi.org/10.3389/fmars.2016.00251
Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212. https://doi.org/10.1038/nature08060
Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67. https://doi.org/10.4319/lo.2003.48.1.0055
Ruiz E, Oosterhof M, Sandaa RA et al (2017) Emerging interaction patterns in the Emiliania huxleyi-EhV system. Viruses 9:61. https://doi.org/10.3390/v9030061
Sadeghi M, Tomaru Y, Ahola T (2021) RNA viruses in aquatic unicellular eukaryotes. Viruses 13:362. https://doi.org/10.3390/v13030362
Sandaa R-A, Pree B, Larsen A et al (2017) The response of heterotrophic prokaryote and viral communities to labile organic carbon inputs is controlled by the predator food chain structure. Viruses 9:238. https://doi.org/10.3390/v9090238
Sandaa RA, Storesund JE, Olesin E et al (2018) Seasonality drives microbial community structure, shaping both eukaryotic and prokaryotic host–viral relationships in an arctic marine ecosystem. Viruses 10:715. https://doi.org/10.3390/v10120715
Schulz KG, Bach LT, Bellerby RGJ et al (2017) Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front Mar Sci 4:64. https://doi.org/10.3389/fmars.2017.00064
Seed KD, Faruque SM, Mekalanos JJ et al (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in vibrio cholerae O1. PLoS Pathog 8:1002917. https://doi.org/10.1371/journal.ppat.1002917
Sharoni S, Trainic M, Schatz D et al (2015) Infection of phytoplankton by aerosolized marine viruses. Proc Natl Acad Sci 112:6643–6647. https://doi.org/10.1073/pnas.1423667112
Slagter HA, Gerringa LJA, Brussaard CPD (2016) Phytoplankton virus production negatively affected by iron limitation. Front Mar Sci 3:156. https://doi.org/10.3389/fmars.2016.00156
Sullivan MB, Weitz JS, Wilhelm S (2017) Viral ecology comes of age. Environ Microbiol Rep 9:33–35. https://doi.org/10.1111/1758-2229.12504
Sun T-W, Yang C-L, Kao T-T et al (2020) Host range and coding potential of eukaryotic giant viruses. Viruses 12:1337. https://doi.org/10.3390/v12111337
Suttle CA (2005) Viruses in the sea. Nature 437:356–361. https://doi.org/10.1038/nature04160
Suttle CA (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5:801–812. https://doi.org/10.1038/nrmicro1750
Talmy D, Beckett SJ, Zhang AB et al (2019) Contrasting controls on microzooplankton grazing and viral infection of microbial prey. Front Mar Sci 6:182. https://doi.org/10.3389/fmars.2019.00182
Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328. https://doi.org/10.4319/lo.2000.45.6.1320
Thingstad TF, Våge S (2019) Host–virus–predator coexistence in a grey-box model with dynamic optimization of host fitness. ISME J 13:3102–3111. https://doi.org/10.1038/s41396-019-0496-7
Thomas L, Parker T (1974) The lives of a cell. Viking Books, New York, NY
Thomas R, Grimsley N, Escande M-L et al (2011) Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ Microbiol 13:1412–1420. https://doi.org/10.1111/j.1462-2920.2011.02441.x
Thomas T, Gilbert J, Meyer F (2012) Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2:3. https://doi.org/10.1186/2042-5783-2-3
Thompson LR, Zeng Q, Kelly L et al (2011) Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci 108:E757–E764. https://doi.org/10.1073/pnas.1102164108
Tomaru Y, Kimura K (2020) Novel protocol for estimating viruses specifically infecting the marine planktonic diatoms. Diversity 12:225. https://doi.org/10.3390/d12060225
Tomaru Y, Toyoda K, Kimura K (2015) Marine diatom viruses and their hosts: resistance mechanisms and population dynamics. Perspect Phycol 2:69–81. https://doi.org/10.1127/pip/2015/0023
Tominaga K, Morimoto D, Nishimura Y et al (2020) In silico prediction of virus-host interactions for marine Bacteroidetes with the use of metagenome-assembled genomes. Front Microbiol 11:738. https://doi.org/10.3389/fmicb.2020.00738
Toseland A, Daines SJ, Clark JR et al (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Chang 3:979–984. https://doi.org/10.1038/nclimate1989
Tsiola A, Michoud G, Fodelianakis S et al (2020) Viral metagenomic content reflects seawater ecological quality in the coastal zone. Viruses 12:806. https://doi.org/10.3390/v12080806
Tsiola A, Pitta P, Giannakourou A et al (2017) Ocean acidification and viral replication cycles: frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea. Estuar Coast Shelf Sci 186:139–151. https://doi.org/10.1016/j.ecss.2016.05.003
van Etten JL (2011) Another really, really big virus. Viruses 3:32–46. https://doi.org/10.3390/v3010032
Vaqué D, Boras JA, Arrieta JM et al (2021) Enhanced viral activity in the surface microlayer of the arctic and antarctic oceans. Microorganisms 9:317. https://doi.org/10.3390/microorganisms9020317
Vlok M, Lang AS, Suttle CA (2019) Marine RNA virus quasispecies are distributed throughout the oceans. mSphere 4:e00157–e00119. https://doi.org/10.1128/mSphereDirect.00157-19
Weitz JS, Stock CA, Wilhelm SW et al (2015) A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J 9:1352–1364. https://doi.org/10.1038/ismej.2014.220
Weynberg K, Allen M, Wilson W (2017) Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9:43. https://doi.org/10.3390/v9030043
Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788. https://doi.org/10.2307/1313569
Williamson SJ, Paul JH (2006) Environmental factors that influence the transition from lysogenic to lytic existence in the φHSIC/Listonella pelagia marine phage-host system. Microb Ecol 52:217–225. https://doi.org/10.1007/s00248-006-9113-1
Yang Q, Gao C, Jiang Y et al (2019) Metagenomic characterization of the viral community of the south scotia ridge. Viruses 11:95. https://doi.org/10.3390/v11020095
Yau S, Caravello G, Fonvieille N et al (2018) Rapidity of genomic adaptations to prasinovirus infection in a marine microalga. Viruses 10:441. https://doi.org/10.3390/v10080441
Yau S, Seth-Pasricha M (2019) Viruses of polar aquatic environments. Viruses 11:189. https://doi.org/10.3390/v11020189
Zablocki O, Michelsen M, Burris M et al (2021) VirION2: a short and long-read sequencing and informatics workflow to study the genomic diversity of viruses in nature. PeerJ 9:e11088. https://doi.org/10.7717/peerj.11088
Zeigler Allen L, McCrow JP, Ininbergs K, et al. (2017) The Baltic Sea virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems 2:e00125-16 doi:https://doi.org/10.1128/mSystems.00125-16
Zhao Z, Gonsior M, Schmitt-Kopplin P et al (2019) Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J 13:2551–2565. https://doi.org/10.1038/s41396-019-0449-1
Zimmerman AE, Howard-Varona C, Needham DM et al (2020) Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 18:21–34. https://doi.org/10.1038/s41579-019-0270-x
Acknowledgements
This work is dedicated to the memory of Professor Martin Sprung, for his enthusiastic commitment to unveil the mysteries of marine life to his students.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mateus, M. (2022). Marine Viruses: Agents of Chaos, Promoters of Order. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-90383-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90382-4
Online ISBN: 978-3-030-90383-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)