Skip to main content

System Identification: the State-of-the-Art

  • Chapter
  • First Online:
Automating Data-Driven Modelling of Dynamical Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

Chapter 1 culminated in the formulation of the research objective pursued in this dissertation: to develop a identification methodology that automates the task of system identification form the user’s perspective. The research objective was also dissected into more specific, actionable research questions. The research objective, and the related research question, proposed in Chap. 1 were motivated by the challenges experienced by a user in the typical identification cycle.

An original idea? That can’t be too hard. The library must be full of them.

Steven Fry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, in the case of linear systems, the errors-in-variables setting reduces to an output-error noise setting, due to the linearity of the system. However, in that case, the noise is correlated with the input, which must be taken into account to accurately estimate a model.

  2. 2.

    Pre- and post-multiplication of \(\hat{\Gamma }_i\) with suitable weighting matrices \(W_1\) and \(W_2\) yield MOESP or CVA algorithms under suitable assumptions. See details in Van Overschee and De Moor [78].

  3. 3.

    As mentioned earlier, while subspace methods can be extended to specific classes of non-linear systems, the extension is usually more involved and require a specially designed numerical methods.

  4. 4.

    A Gaussian Process is a generalization of the Gaussian distribution over functions with a continuous domain, see Rasmussen and Williams [64] for details.

  5. 5.

    These assumptions provide significant computational advantage, as will be discussed in the sequel.

References

  1. Andersson C, Ribeiro AH, Tiels K, Wahlström N, Schön T (2019) Deep convolutional networks in system identification. arXiv preprint arXiv:1909.01730

  2. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Article  MathSciNet  MATH  Google Scholar 

  3. Arruda L, Favier G (1992) A review and a comparison of robust estimation methods. IFAC Proc Vol 25(15):247–253

    Article  MathSciNet  Google Scholar 

  4. Åström KJ, Eykhoff P (1971) System identification—a survey. Automatica 7(2):123–162

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas GJ (2002) Linear, parameter-varying control and its application to a turbofan engine. Int J Robust Nonlinear Control 12(9):763–796

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer D (2001) Order estimation for subspace methods. Automatica 37(10):1561–1573

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer D, Deistler M, Scherrer W (1999) Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs. Automatica 35(7):243–1254

    Article  MathSciNet  MATH  Google Scholar 

  8. Belforte G, Tay T (1992) Recursive estimation for linear models with set membership measurement error. IFAC Proc Vol 25(15):241–246

    Article  MathSciNet  Google Scholar 

  9. Bergman S, Schiffer M (1948) Theory of kernel functions in conformal mapping. Appl Math Ser 18:199

    Google Scholar 

  10. Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley, New York

    Google Scholar 

  11. Birpoutsoukis G, Marconato A, Lataire J, Schoukens J (2017) Regularized nonparametric volterra kernel estimation. Automatica 82:324–327

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50(5):1873–1896

    Article  MATH  Google Scholar 

  13. Chen T, Ohlsson H, Ljung L (2012) On the estimation of transfer functions, regularizations and gaussian processes-revisited. Automatica 48(8):1525–1535

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiuso A, Pillonetto G (2019) System identification: a machine learning perspective. Robotics, and Autonomous Systems, Annual Review of Control

    Google Scholar 

  15. Cox PB (2018) Towards efficient identification of linear parameter-varying state-space models. Ph.D. thesis, Eindhoven University of Technology

    Google Scholar 

  16. Dahlén A, Lindquist A, Mari J (1998) Experimental evidence showing that stochastic subspace identification methods may fail. Syst Control Lett 34(5):303–312

    Article  MathSciNet  MATH  Google Scholar 

  17. de Rozario R, Oomen T (2018) Frequency response function identification of lpv systems: a global approach with application to mechanical systems. IFAC-Papers OnLine 51(15):108–113

    Article  Google Scholar 

  18. Favoreel W, De Moor B, Van Overschee P (1999) Subspace identification of bilinear systems subject to white inputs. IEEE Trans Autom Control 44(6):1157–1165

    Article  MathSciNet  MATH  Google Scholar 

  19. Frigola R, Lindsten F, Schön TB, Rasmussen CE (2013) Bayesian inference and learning in gaussian process state-space models with particle mcmc. In: Advances in neural information processing systems, pp 3156–3164

    Google Scholar 

  20. Garulli A, Paoletti S, Vicino A (2012) A survey on switched and piecewise affine system identification. IFAC Proc Vol 45(16):344–355

    Article  Google Scholar 

  21. Giri F, Bai E-W (2010) Block-oriented nonlinear system identification, vol 1. Springer, Berlin

    Google Scholar 

  22. Goebel R, Sanfelice RG, Teel AR (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29(2):28–93

    Article  MathSciNet  MATH  Google Scholar 

  23. Goodfellow I, Bengio Y, Courville A (2016) Deep learning

    Google Scholar 

  24. Gutman P-O, Baril C, Neumann L (1994) An algorithm for computing value sets of uncertain transfer functions in factored real form. IEEE Trans Autom Control 39(6):1268–1273

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirsch MW, Smale S, Devaney RL (2012) Differential equations, dynamical systems, and an introduction to chaos. Academic, New York

    Google Scholar 

  26. Kacewicz B (1996) Solving linear problems in the presence of bounded data perturbations. In: Bounding approaches to system identification, pp 29–42. Springer, Berlin

    Google Scholar 

  27. Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33(1):82–95

    Article  MathSciNet  MATH  Google Scholar 

  28. Kimeldorf GS, Wahba G (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann Math Stat 41(2):495–502

    Article  MathSciNet  MATH  Google Scholar 

  29. Kingma DP, Adam JB (2014) A method for stochastic optimization. In: 3rd International Conference for Learning Representation (ICLR)

    Google Scholar 

  30. Kosut RL (1988) Adaptive robust control via transfer function uncertainty estimation. In: 1988 American Control Conference. IEEE, , pp 349–354

    Google Scholar 

  31. Kuijstermans FCM (2004) Design of nonlinear circuits: The linear time-varying approach

    Google Scholar 

  32. Kuntsevich V (1996) Set-valued estimation of state and parameter vectors within adaptive control systems. In: Bounding approaches to system identification. Springer, pp 239–259

    Google Scholar 

  33. Larimore WE (1990) Canonical variate analysis in identification, filtering, and adaptive control. In: 29th IEEE conference on decision and control. IEEE, pp 596–604

    Google Scholar 

  34. Lataire J, Pintelon R, Louarroudi E (2012) Non-parametric estimate of the system function of a time-varying system. Automatica 48(4):666–672

    Article  MathSciNet  MATH  Google Scholar 

  35. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  36. Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Bentley PJ, Bernard S, Beslon G, Bryson DM et al (2018) The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. arXiv preprint arXiv:1803.03453

  37. Li Y, Wei H-L, Billings SA (2010) Identification of time-varying systems using multi-wavelet basis functions. IEEE Trans Control Syst Technol 19(3):656–663

    Article  Google Scholar 

  38. Lindsten F, Schön TB, Jordan MI (2013) Bayesian semiparametric wiener system identification. Automatica 49(7):2053–2063

    Article  MathSciNet  MATH  Google Scholar 

  39. Ljung L (1998) System identification. In: Signal analysis and prediction. Springer, Berlin, pp 163–173

    Google Scholar 

  40. Ljung L (ed) System identification, 2nd ed. Theory for the User. Prentice Hall PTR. ISBN 0-13-656695-2

    Google Scholar 

  41. Lusch B, Kutz JN, Brunton SL (2018) Deep learning for universal linear embeddings of nonlinear dynamics. Nat Commun 9(1):4950

    Article  Google Scholar 

  42. Mardt A, Pasquali L, Wu H, Noé F (2018) Vampnets for deep learning of molecular kinetics. Nat Commun 9(1):5

    Article  Google Scholar 

  43. Markovsky I, Willems JC, Rapisarda P, De Moor BL (2005) Algorithms for deterministic balanced subspace identification. Automatica 41(5):755–766

    Article  MathSciNet  MATH  Google Scholar 

  44. Masti D, Bemporad A (2018) Learning nonlinear state-space models using deep autoencoders. In: IEEE Conference on Decision and Control (CDC). IEEE, pp 3862–3867

    Google Scholar 

  45. Mercer J (1909) Functions of positive and negative type, and their connection the theory of integral equations. Philos Trans R Soc Lond Seri A 209(441–458): 415–446 (containing papers of a mathematical or physical character)

    Google Scholar 

  46. Milanese M, Novara C (2004) Set membership identification of nonlinear systems. Automatica 40(6):957–975

    Article  MathSciNet  MATH  Google Scholar 

  47. Milanese M, Taragna M (2002) Optimality, approximation, and complexity in set membership H/sub/spl infin//identification. IEEE Trans Autom Control 47(10):1682–1690

    Article  MATH  Google Scholar 

  48. Milanese M, Vicino A (1991) Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica 27(6):997–1009

    Article  MathSciNet  MATH  Google Scholar 

  49. Milanese M, Norton J, Piet-Lahanier H, Walter É (2013) Bounding approaches to system identification. Springer Science & Business Media

    Google Scholar 

  50. Mohammadpour J, Scherer CW (2012) Control of linear parameter varying systems with applications. Springer Science & Business Media

    Google Scholar 

  51. Moonen M, Ramos J (1993) A subspace algorithm for balanced state space system identification. IEEE Trans Autom Control 38(11):1727–1729

    Article  MathSciNet  MATH  Google Scholar 

  52. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Networks 1(1):4–27

    Article  Google Scholar 

  53. Nelles O (2002) Nonlinear system identification. IOP Publishing

    Google Scholar 

  54. Ninness B, Henriksen S (2010) Bayesian system identification via Markov chain Monte Carlo techniques. Automatica 46(1):40–51

    Article  MathSciNet  MATH  Google Scholar 

  55. Noël J-P, Kerschen G (2013) Frequency-domain subspace identification for nonlinear mechanical systems. Mech Syst Signal Process 40(2):701–717

    Article  Google Scholar 

  56. Otto SE, Rowley CW (2019) Linearly recurrent autoencoder networks for learning dynamics. SIAM J Appl Dyn Syst 18(1):558–593

    Article  MathSciNet  MATH  Google Scholar 

  57. Paduart J, Lauwers L, Swevers J, Smolders K, Schoukens J, Pintelon R (2010) Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46(4):647–656

    Article  MathSciNet  MATH  Google Scholar 

  58. Picci G, Katayama T (1996) Stochastic realization with exogenous inputs and ‘subspace-methods’ identification. Signal Process 52(2):145–160

    Article  MATH  Google Scholar 

  59. Pillonetto G, De Nicolao G (2010) A new kernel-based approach for linear system identification. Automatica 46(1):81–93

    Article  MathSciNet  MATH  Google Scholar 

  60. Pillonetto G, Chiuso A, De Nicolao G (2011) Prediction error identification of linear systems: a nonparametric gaussian regression approach. Automatica 47(2):291–305

    Article  MathSciNet  MATH  Google Scholar 

  61. Pillonetto G, Dinuzzo F, Chen T, De Nicolao G, Ljung L (2014) Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3):657–682

    Article  MathSciNet  MATH  Google Scholar 

  62. Pintelon R, Schoukens J (2012) System identification: a frequency domain approach. Wiley, New York

    Google Scholar 

  63. Puig V (2010) Fault diagnosis and fault tolerant control using set-membership approaches: application to real case studies. Int J Appl Math Comput Sci 20(4):619–635

    Article  MathSciNet  MATH  Google Scholar 

  64. Rasmussen CE, Williams C (2017) Gaussian processes for machine learning, p 95

    Google Scholar 

  65. Rojas CR, Tóth R, Hjalmarsson H (2014) Sparse estimation of polynomial and rational dynamical models. IEEE Trans Autom Control 59(11):2962–2977

    Article  MathSciNet  MATH  Google Scholar 

  66. Schölkopf B, Smola AJ, Bach F et al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambidge

    Google Scholar 

  67. Schoukens J, Pintelon R, Rolain Y, Schoukens M, Tiels K, Vanbeylen L, Van Mulders A, Vandersteen G (2015) Structure discrimination in block-oriented models using linear approximations: a theoretic framework. Automatica 53:225–234

    Article  MathSciNet  MATH  Google Scholar 

  68. Schoukens M, Tiels K (2017) Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85:272–292

    Article  MathSciNet  MATH  Google Scholar 

  69. Schoukens M, Tóth R (2018) Linear parameter varying representation of a class of mimo nonlinear systems. IFAC-Papers OnLine 51(26):94–99

    Article  Google Scholar 

  70. Sjöberg J, Hjalmarsson H, Ljung L (1994) Neural networks in system identification. Linköping University

    Google Scholar 

  71. Stoddard J, Birpoutsoukis G (2017) Gaussian process regression for generalized frequency response function estimation. arXiv preprint arXiv:1710.09828

  72. Suykens JA, Vandewalle JP, de Moor BL (2012) Artificial neural networks for modelling and control of non-linear systems. Springer Science & Business Media

    Google Scholar 

  73. Tikhonov AN, Arsenin VI (1977) Solutions of ill-posed problems, vol 14. Vh Winston

    Google Scholar 

  74. Tóth R (2010) Modeling and identification of linear parameter-varying systems, vol 403. Springer

    Google Scholar 

  75. Van den Boom T, Klompstra M, Damen A (1991) System identification for \(H_{\infty }\)-robust control design. IFAC Proc Vol 24(3):971–976

    Google Scholar 

  76. Van den Hof PM, Dankers A, Heuberger PS, Bombois X (2013) Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates. Automatica 49(10):2994–3006

    Article  MathSciNet  MATH  Google Scholar 

  77. Van Overschee P, De Moor B (1994) N4sid: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1):75–93

    Article  MathSciNet  MATH  Google Scholar 

  78. Van Overschee P, De Moor B (1995) A unifying theorem for three subspace system identification algorithms. Automatica 31(12):1853–1864

    Article  MathSciNet  MATH  Google Scholar 

  79. Van Overschee P, De Moor B (2012) Subspace identification for linear systems: theory-implementation-applications. Springer Science & Business Media

    Google Scholar 

  80. Van Wingerden J-W, Verhaegen M (2009) Subspace identification of bilinear and LPY systems for open-and closed-loop data. Automatica 45(2):372–381

    Article  MathSciNet  MATH  Google Scholar 

  81. Verhaegen M, Dewilde P (1992) Subspace model identification part 2. Analysis of the elementary output-error state-space model identification algorithm. Int J Control 56(5):1211–1241

    Google Scholar 

  82. Verhaegen M, Westwick D (1996) Identifying MIMO Hammerstein systems in the context of subspace model identification methods. IFAC Proc Vol 29(1):4092–4097

    Article  MATH  Google Scholar 

  83. Verhaegen M, Yu X (1995) A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems. Automatica 31(2):201–216

    Article  MathSciNet  MATH  Google Scholar 

  84. Walter E, Piet-Lahanier H (1990) Estimation of parameter bounds from bounded-error data: a survey. Math Comput Simul 32(5–6):449–468

    Article  MathSciNet  Google Scholar 

  85. Wang Y (2017) A new concept using lstm neural networks for dynamic system identification. In: American Control Conference (ACC). IEEE, pp 5324–5329

    Google Scholar 

  86. Westwick D, Verhaegen M (1996) Identifying MIMO Wiener systems using subspace model identification methods. Signal Process 52(2):235–258

    Article  MATH  Google Scholar 

  87. Witsenhausen H (1968) Sets of possible states of linear systems given perturbed observations. IEEE Trans Autom Control 13(5):556–558

    Article  MathSciNet  Google Scholar 

  88. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2017) Understanding deep learning requires rethinking generalization. In: 5th International Conference for Learning Representation (ICLR)

    Google Scholar 

  89. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice-Hall Inc., Upper Saddle River. 0-13-456567-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandelwal, D. (2022). System Identification: the State-of-the-Art. In: Automating Data-Driven Modelling of Dynamical Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-90343-5_2

Download citation

Publish with us

Policies and ethics