Skip to main content

Towards Single-Molecule Chiral Sensing and Separation

  • Chapter
  • First Online:
Single Molecule Sensing Beyond Fluorescence

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1047 Accesses

Abstract

Molecular chirality refers to molecules with the same composition but with different three-dimensional orientation. In biological systems, almost all molecules have chiral structures. Since molecules with different chirality may vary differently in their biochemical reaction, it is important to detect and separate these molecules in the biomedical and pharmaceutical industry. Despite significant progress made toward single-molecule sensing, it is still challenging to differentiate and detect chiral molecules at single-molecule resolution in racemic mixtures. Herein, we discuss the existing techniques towards single chiral molecule sensing and separation. We start with traditional methods, specifically chiral chromatographic methods, which label the chiral molecules with surfactants or other molecules in order to separate and detect them. New techniques using electromagnetic fields for label-free chiral sorting will also be explored. We then review the use of nanophotonic platforms to increase chiro-optical responses for chiral sensing with high sensitivity down to picogram quantities. We finalize with our perspective on opportunities and challenges for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Gal, “Molecular chirality in chemistry and biology: Historical milestones,” Helvetica Chimica Acta, vol. 96, no. 9, pp. 1617–1657, 2013.

    CAS  Google Scholar 

  2. A. M. Evans, “Comparative pharmacology of s (+)-ibuprofen and (rs)-ibuprofen,” Clinical rheumatology, vol. 20, no. 1, pp. 9–14, 2001.

    Google Scholar 

  3. J. Kumar, H. Eraña, E. López-Martínez, N. Claes, V. F. Martín, D. M. Solís, S. Bals, A. L. Cortajarena, J. Castilla, and L. M. Liz-Marzán, “Detection of amyloid fibrils in parkinson,Äôs disease using plasmonic chirality,” Proceedings of the National Academy of Sciences, vol. 115, no. 13, pp. 3225–3230, 2018.

    CAS  Google Scholar 

  4. K. Kalíková, T. Šlechtová, and E. Tesařová, “Enantiomeric ratio of amino acids as a tool for determination of aging and disease diagnostics by chromatographic measurement,” Separations, vol. 3, no. 4, p. 30, 2016.

    Google Scholar 

  5. W. König, R. Krebber, and P. Mischnick, “Cyclodextrins as chiral stationary phases in capillary gas chromatography. part v: Octakis (3-o-butyryl-2, 6-di-o-pentyl)-\(\gamma \)-cyclodextrin,” Journal of High Resolution Chromatography, vol. 12, no. 11, pp. 732–738, 1989.

    Google Scholar 

  6. S. Fox, H. Strasdeit, S. Haasmann, and H. Brückner, “Gas chromatographic separation of stereoisomers of non-protein amino acids on modified \(\gamma \)-cyclodextrin stationary phase,” Journal of Chromatography A, vol. 1411, pp. 101–109, 2015.

    CAS  PubMed  Google Scholar 

  7. T. Loftsson and M. E. Brewster, “Pharmaceutical applications of cyclodextrins. 1. drug solubilization and stabilization,” Journal of pharmaceutical sciences, vol. 85, no. 10, pp. 1017–1025, 1996.

    CAS  PubMed  Google Scholar 

  8. Z. Aturki, “Use of \(\beta \)-cyclodextrin polymer as a chiral selector in capillary electrophoresis,” Journal of Chromatography A, vol. 680, no. 1, pp. 137–146, 1994.

    CAS  Google Scholar 

  9. M. B. Sørensen, P. Aaslo, H. Egsgaard, and T. Lund, “Determination of d/l-amino acids by zero needle voltage electrospray ionisation,” Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry, vol. 22, no. 4, pp. 455–461, 2008.

    Google Scholar 

  10. A. L. Ong, A. H. Kamaruddin, S. Bhatia, and H. Y. Aboul-Enein, “Enantioseparation of (r, s)-ketoprofen using candida antarctica lipase b in an enzymatic membrane reactor,” Journal of separation science, vol. 31, no. 13, pp. 2476–2485, 2008.

    CAS  PubMed  Google Scholar 

  11. B. Sellergren, “Imprinted chiral stationary phases in high-performance liquid chromatography,” Journal of Chromatography A, vol. 906, no. 1-2, pp. 227–252, 2001.

    CAS  PubMed  Google Scholar 

  12. R. Gutierrez-Climente, A. Gomez-Caballero, A. Guerreiro, D. Garcia-Mutio, N. Unceta, M. A. Goicolea, and R. J. Barrio, “Molecularly imprinted nanoparticles grafted to porous silica as chiral selectors in liquid chromatography,” Journal of Chromatography A, vol. 1508, pp. 53–64, 2017.

    CAS  PubMed  Google Scholar 

  13. J. Teixeira, M. E. Tiritan, M. M. Pinto, and C. Fernandes, “Chiral stationary phases for liquid chromatography: Recent developments,” Molecules, vol. 24, no. 5, p. 865, 2019.

    PubMed Central  Google Scholar 

  14. R. Sardella, F. Ianni, A. Lisanti, S. Scorzoni, F. Marini, S. Sternativo, and B. Natalini, “Direct chromatographic enantioresolution of fully constrained \(\beta \)-amino acids: exploring the use of high-molecular weight chiral selectors,” Amino acids, vol. 46, no. 5, pp. 1235–1242, 2014.

    CAS  PubMed  Google Scholar 

  15. C.-C. Hwang and W.-C. Lee, “Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 765, no. 1, pp. 45–53, 2001.

    CAS  PubMed  Google Scholar 

  16. E. Gil-Av, B. Feibush, and R. Charles-Sigler, “Separation of enantiomers by gas liquid chromatography with an optically active stationary phase,” Tetrahedron Letters, vol. 7, no. 10, pp. 1009–1015, 1966.

    Google Scholar 

  17. G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nature communications, vol. 5, no. 1, pp. 1–7, 2014.

    Google Scholar 

  18. T. Zhang, M. R. C. Mahdy, Y. Liu, J. H. Teng, C. T. Lim, Z. Wang, and C.-W. Qiu, “All-optical chirality-sensitive sorting via reversible lateral forces in interference fields,” ACS nano, vol. 11, no. 4, pp. 4292–4300, 2017.

    CAS  PubMed  Google Scholar 

  19. Y. Zhao, A. Saleh, and J. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers.”

    Google Scholar 

  20. I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Near-field electromagnetic trapping through curl-spin forces,” Physical Review A, vol. 87, no. 6, p. 063807, 2013.

    Google Scholar 

  21. K. Banerjee-Ghosh, O. B. Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua, S.-H. Yang, S. S. Parkin, S. Sarkar, L. Kronik, et al., “Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates,” Science, vol. 360, no. 6395, pp. 1331–1334, 2018.

    CAS  PubMed  Google Scholar 

  22. A. Kumar, E. Capua, M. K. Kesharwani, J. M. Martin, E. Sitbon, D. H. Waldeck, and R. Naaman, “Chirality-induced spin polarization places symmetry constraints on biomolecular interactions,” Proceedings of the National Academy of Sciences, vol. 114, no. 10, pp. 2474–2478, 2017.

    CAS  Google Scholar 

  23. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Physical review letters, vol. 104, no. 16, p. 163901, 2010.

    PubMed  Google Scholar 

  24. S. Yoo and Q.-H. Park, “Enhancement of chiroptical signals by circular differential mie scattering of nanoparticles,” Scientific reports, vol. 5, no. 1, pp. 1–8, 2015.

    CAS  Google Scholar 

  25. S. Lee, S. Yoo, and Q.-H. Park, “Microscopic origin of surface-enhanced circular dichroism,” ACS Photonics, vol. 4, no. 8, pp. 2047–2052, 2017.

    CAS  Google Scholar 

  26. Y. Zhao, “Chirality detection of enantiomers using twisted optical metamaterials,” Nature Communications, vol. 8, no. 1, pp. 1–8, 2017.

    Google Scholar 

  27. P. Gutsche and M. Nieto-Vesperinas, “Optical chirality of time-harmonic wavefields for classification of scatterers,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.

    CAS  Google Scholar 

  28. L. V. Poulikakos, J. A. Dionne, and A. García-Etxarri, “Optical helicity and optical chirality in free space and in the presence of matter,” Symmetry, vol. 11, no. 9, p. 1113, 2019.

    CAS  Google Scholar 

  29. T. Raziman, R. H. Godiksen, M. A. Müller, and A. G. Curto, “Conditions for enhancing chiral nanophotonics near achiral nanoparticles,” ACS Photonics, vol. 6, no. 10, pp. 2583–2589, 2019.

    CAS  Google Scholar 

  30. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature nanotechnology, vol. 9, no. 6, p. 448, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Liu, Z. Wu, and Y. Zheng, “Moiré chiral metamaterials,” Communication, vol. 5, no. 16, 2017.

    Google Scholar 

  32. J. Li, M. Wang, Z. Wu, H. Li, G. Hu, T. Jiang, J. Guo, Y. Liu, K. Yao, Z. Chen, et al., “Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures,” Nano Letters, 2020.

    Google Scholar 

  33. M. Selmke, U. Khadka, A. P. Bregulla, F. Cichos, and H. Yang, “Theory for controlling individual self-propelled micro-swimmers by photon nudging i: directed transport,” Physical Chemistry Chemical Physics, vol. 20, no. 15, pp. 10502–10520, 2018.

    CAS  PubMed  Google Scholar 

  34. B. Qian, D. Montiel, A. Bregulla, F. Cichos, and H. Yang, “Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging,” Chemical Science, vol. 4, no. 4, pp. 1420–1429, 2013.

    CAS  Google Scholar 

  35. W. A. Paiva-Marques, F. Reyes Gómez, O. N. Oliveira, and J. R. Mejía-Salazar, “Chiral plasmonics and their potential for point-of-care biosensing applications,” Sensors, vol. 20, no. 3, p. 944, 2020.

    Google Scholar 

  36. J. García-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays,” Nano letters, vol. 18, no. 10, pp. 6279–6285, 2018.

    PubMed  Google Scholar 

  37. C. Kelly, L. Khosravi Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, and M. Kadodwala, “Controlling metamaterial transparency with superchiral fields,” ACS Photonics, vol. 5, no. 2, pp. 535–543, 2018.

    Google Scholar 

  38. Y. Chen, X. Yang, and J. Gao, “3d janus plasmonic helical nanoapertures for polarization-encrypted data storage,” Light: Science & Applications, vol. 8, no. 1, pp. 1–9, 2019.

    Google Scholar 

  39. R. Zhang, Q. Zhao, X. Wang, W. Gao, J. Li, and W. Y. Tam, “Measuring circular phase-dichroism of chiral metasurface,” Nanophotonics, vol. 8, no. 5, pp. 909–920, 2019.

    Google Scholar 

  40. M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” Acs Photonics, vol. 1, no. 6, pp. 530–537, 2014.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation (NSF–ECCS–2001650), the National Aeronautics and Space Administration Early Career Faculty Award (80NSSC17K0520), and the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446). The authors also acknowledge the generous contribution of three illustrations by Naftal Mat Mautia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuebing Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanders, R., Liu, Y., Zheng, Y. (2022). Towards Single-Molecule Chiral Sensing and Separation. In: Bowen, W., Vollmer, F., Gordon, R. (eds) Single Molecule Sensing Beyond Fluorescence . Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-90339-8_9

Download citation

Publish with us

Policies and ethics