Skip to main content

The Technology of Spatial Relations Visualization Based on the Analysis of Natural Language Texts

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 232))

Abstract

This paper considers the problem of recognizing information about the spatial relations of geographical objects in natural language texts. The proposed technology of spatial relations visualization makes it possible to extract geographical information from unstructured texts and present it in a structured form suitable for use by modern geographical information systems. The extracted information can be used for automated filling and updating the database of geographic information system for generating cartograms that allow visual analysis of the spatial connectivity of arbitrary geographical objects. To get the best result, we combine neural network methods to recognize named entities (geographical objects), a rule-based approach to identify potential spatial relationships, and domain-specific lexical patterns. Since the information about recognized geographical entities and spatial relationships is stored in a standardized structured form, we can use standard geoservices for visualization without additional preparation of geodata in the last stage of the technology. The result of the visualization is a geographical image (cartogram) showing the spatial relations of geographical objects recognized as a result of the analysis of natural language texts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, M.: An overview of natural language processing. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 7, 2811–2813 (2019)

    Article  Google Scholar 

  2. Pilecki, B.M., Vicentiy, A.V.: Development of a method for extracting spatial data from texts for visualization and information decision-making support for territorial management. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing (2020). https://doi.org/10.1088/1755-1315/539/1/012087

  3. Pedrosa, J., Oliveira, D.M., Meira, W., Ribeiro, A.L.: Automated classification of cardiology diagnoses based on textual medical reports. In: Proceedings of the 8th Symposium on Knowledge Discovery, Mining and Learning (KDMILE 2020), pp. 185–192 (2020)

    Google Scholar 

  4. Purves, R.S., Clough, P., Jones, C.B., Hall, M.H., Murdock, V.: Geographic information retrieval: progress and challenges in spatial search of text. In: Foundations and Trends in Information Retrieval, vol. 12, pp. 164–318. Now Publishers Inc. (2018)

    Google Scholar 

  5. Vicentiy, A.V., Dikovitsky, V.V., Shishaev, M.G.: Automated extraction and visualization of spatial data obtained by analyzing texts about projects of arctic transport logistics development. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) Intelligent Systems Applications in Software Engineering. AISC, vol. 1046, pp. 419–433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30329-7_37

    Chapter  Google Scholar 

  6. Grishman, R.: Information extraction. In: Clark, A., Fox, C., Lappin, S. (eds.): The Handbook of Computational Linguistics and Natural Language Processing, pp. 515–530. Wiley-Blackwell, Malden (2010)

    Google Scholar 

  7. Doddington, G.R., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., Weischedel, R.: The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation (2004). http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf

  8. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Int. J. Linguist. Lang. Resour. Investig. 30, 3–26 (2007). https://doi.org/10.1075/li.30.1.03nad

    Article  Google Scholar 

  9. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pp. 147–155. Association for Computational Linguistics (2009)

    Google Scholar 

  10. Campelo, C.E.C., de Souza Baptista, C.: A model for geographic knowledge extraction on web documents. In: Heuser, C.A., Pernul, G. (eds.) Advances in Conceptual Modeling - Challenging Perspectives. LNCS, vol. 5833, pp. 317–326. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04947-7_38

    Chapter  Google Scholar 

  11. Campelo, E.C., Baptista, C.S.: Mining influential terms for toponym recognition and resolution. Revista Brasileira de Cartografia. 68, 1123–1132 (2016)

    Google Scholar 

  12. Zenasni, S., Kergosien, E., Roche, M., Teisseire, M.: Spatial information extraction from short messages. Expert Syst. Appl. 95, 351–367 (2018)

    Article  Google Scholar 

  13. Acheson, E., Volpi, M., Purves, R.S.: Machine learning for cross-gazetteer matching of natural features. Int. J. Geogr. Inf. 34, 1–27 (2019)

    Google Scholar 

  14. Capineri, C., et al.: European Handbook of Crowdsourced Geographic Information, p. 474. Ubiquity Press, London (2016). https://doi.org/10.5334/bax

    Book  Google Scholar 

  15. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2145–2158. Association for Computational Linguistics, Santa Fe (2018)

    Google Scholar 

  16. Stock, K.: Mining location from social media: a systematic review (2018). www.elsevier.com/locate/ceus, https://doi.org/10.1016/j.compenvurbsys.2018.05.007

  17. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  18. Ivanitskiy, R., Shipilo, A., Kovriguina, L.: Russian named entities recognition and classification using distributed word and phrase representations. In: Proceedings of the 3rd Annual International Symposium on Information Management and Big Data - SIMBig 2016, Cusco, Peru, 1–3 September 2016, pp. 150–156. CEUR-WS.org (2016)

    Google Scholar 

  19. Alfred, R., et al.: A rule-based named-entity recognition for Malay articles. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) Advanced Data Mining and Applications. LNCS (LNAI), vol. 8346, pp. 288–299. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53914-5_25

    Chapter  Google Scholar 

  20. Song, H.J., Jo, B.C., Park, C.Y., Kim, J.D., Kim, Y.S.: Comparison of named entity recognition methodologies in biomedical documents. Biomed. Eng. Online 17, 158 (2018). https://doi.org/10.1186/s12938-018-0573-6

    Article  Google Scholar 

  21. Eftimov, T., Seljak, B.K., Korošec, P.: A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations. PLoS ONE 12 (2017). https://doi.org/10.1371/journal.pone.0179488

  22. Işıklar, Y.E., Çiçekli, N.: A TV content augmentation system exploiting rule based named entity recognition method. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) Information Sciences and Systems 2015. LNEE, vol. 363, pp. 349–357. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22635-4_32

    Chapter  Google Scholar 

  23. Sari, Y., Hassan, M.F., Zamin, N.: Rule-based pattern extractor and named entity recognition: a hybrid approach. In: Proceedings 2010 International Symposium on Information Technology - Engineering Technology, ITSim 2010, pp. 563–568 (2010). https://doi.org/10.1109/ITSIM.2010.5561392

  24. Piskorski, J., Pivovarova, L., Šnajder, J., Steinberger, J., Yangarber, R.: The first cross-lingual challenge on recognition, normalization, and matching of named entities in Slavic languages. In: Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing, pp. 76–85. Association for Computational Linguistics, Stroudsburg (2017). https://doi.org/10.18653/v1/w17-1412

  25. Piskorski, J., et al.: The second cross-lingual challenge on recognition, normalization, classification, and linking of named entities across Slavic languages. In: Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing, pp. 63–74. Association for Computational Linguistics, Stroudsburg (2019). https://doi.org/10.18653/v1/W19-3709

  26. Official BERT github. https://github.com/google-research/bert. Accessed 17 Aug 2021

  27. Official Natasha. https://natasha.github.io/. Accessed 17 Aug 2021

  28. Brykina, M.M., Faynveyts, A.V., Toldova, S.Yu.: Dictionary-based ambiguity resolution in Russian named entities recognition: a case study, vol. 1, pp. 163–177 (2013)

    Google Scholar 

  29. Earley, J.: An efficient context-free parsing algorithm. In: Communications of the ACM, vol. 13, pp. 94–102 (1970)

    Google Scholar 

  30. Official Yargy parser. https://github.com/natasha/yargy. Accessed 17 Aug 2021

  31. Naykhanova, L.V.: The technology of creating methods for automatically constructing ontologies using genetic and automatic programming, UlanUde, p. 244 (2008). (in Russian)

    Google Scholar 

  32. Nenausnikov, K.V., Kuleshov, S.V.: Algorithm of automatic selection of collocations from the text. J. Instrum. Eng. 62(11), 976–981 (2019). (in Russian)

    Google Scholar 

  33. Apresyan, Y.D.: Three-level control theory: lexicographical aspect. In: Typology of Language and Theory of Grammar, pp. 17–21 (2007). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vicentiy, A.V., Shishaev, M.G. (2021). The Technology of Spatial Relations Visualization Based on the Analysis of Natural Language Texts. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Application in Informatics. CoMeSySo 2021. Lecture Notes in Networks and Systems, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-030-90318-3_78

Download citation

Publish with us

Policies and ethics