Skip to main content

Inference Methods for Evaluable Knowledge Bases

  • 616 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 232)

Abstract

This paper investigates inference from evaluable knowledge bases without reasoning by contradiction. These knowledge bases are comprised of non-Horn rules with partial predicates and functions, some of them are defined as recursive functions. This inference corresponds to model elimination without the reduction rule, which is equivalent to forward and backward chaining extended with rule contrapositives, to input resolution, and to constrained resolution without factoring including its ordered variant.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90318-3_41
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-90318-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

References

  1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of automated reasoning, vol. 1, pp. 19–99. Elsevier, Amsterdam (2001)

    Google Scholar 

  2. Besnard, P., Hunter, A.: A review of argumentation based on deductive arguments. Handbook of Formal Argumentation, pp. 437–484 (2018)

    Google Scholar 

  3. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Logic Comput. 21(6), 1177–1216 (2010)

    CrossRef  MathSciNet  Google Scholar 

  4. Casas, A., Cabeza, D., Hermenegildo, M.V.: A syntactic approach to combining functional notation, lazy evaluation, and higher-order in LP systems. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 146–162. Springer, Heidelberg (2006). https://doi.org/10.1007/11737414_11

    CrossRef  MATH  Google Scholar 

  5. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, Cambridge (1973)

    Google Scholar 

  6. Cohen, L., Rowe, R.N.S.: Uniform inductive reasoning in transitive closure logic via infinite descent. In: 27th EACSL Annual Conference on Computer Science Logic, vol. 119, pp. 17:1–17:16. LIPICS (2018)

    Google Scholar 

  7. Denecker, M., Truszczynski, M., Vennekens, J.: About negation-as-failure and the informal semantics of logic programming. Association for Logic Programming (2017)

    Google Scholar 

  8. Denecker, M., Vennekens, J.: The well-founded semantics is the principle of inductive definition, revisited. In: 14th International Conference on the Principles of Knowledge Representation and Reasoning, AAAI (2014)

    Google Scholar 

  9. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)

    CrossRef  MathSciNet  Google Scholar 

  10. Hanus, M.: Functional logic programming: from theory to curry. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1_6

    CrossRef  MATH  Google Scholar 

  11. Hermenegildo, M.V., et al.: An overview of Ciao and its design philosophy. Theor. Pract. Logic Program. 12(1–2), 219–252 (2012)

    CrossRef  MathSciNet  Google Scholar 

  12. Hou, P., De Cat, B., Denecker, M.: FO (FD): extending classical logic with rule-based fixpoint definitions. Theor. Pract. Logic Program. 10(4–6), 581–596 (2010)

    CrossRef  MathSciNet  Google Scholar 

  13. Jeřábek, E.: Admissible rules of Łukasiewicz logic. J. Logic Comput. 20(2), 425–447 (2010)

    CrossRef  MathSciNet  Google Scholar 

  14. Kakas, A.C., Mancarella, P., Toni, F.: On argumentation logic and propositional logic. Studia Logica 106(2), 237–279 (2018)

    CrossRef  MathSciNet  Google Scholar 

  15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

    CrossRef  Google Scholar 

  16. McCune, W.: Otter 3.3 reference manual and guide. Technical report, Argonne National Lab. (2003)

    Google Scholar 

  17. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. Handbook Autom. Reasoning, vol. 1, pp. 371–443. Elsevier (2001)

    Google Scholar 

  18. Rodríguez-Hortalá, J., Sánchez-Hernández, J.: Functions and lazy evaluation in Prolog. Electron. Notes Theor. Comput. Sci. 206, 153–174 (2008)

    CrossRef  MathSciNet  Google Scholar 

  19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall Press, Hoboken (2009)

    Google Scholar 

  20. Sakharov, A.: Hierarchical resolution for structured predicate definitions. In: 11th Hellenic Conference on Artificial Intelligence, pp. 202–210 (2020)

    Google Scholar 

  21. Sakharov, A.: Heuristic backward chaining based on predicate tensorization. In: Silhavy, R. (ed.) CSOC 2021. LNNS, vol. 229, pp. 573–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77445-5_52

    CrossRef  Google Scholar 

  22. Schlipf, J.S.: The expressive powers of the logic programming semantics. J. Comput. Syst. Sci. 51(1), 64–86 (1995)

    CrossRef  MathSciNet  Google Scholar 

  23. Shen, Y.D., Yuan, L.Y., You, J.H.: SLT-resolution for the well-founded semantics. J. Autom. Reasoning 28(1), 53–97 (2002)

    CrossRef  MathSciNet  Google Scholar 

  24. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of mercury, an efficient purely declarative logic programming language. J. Logic Program. 29(1–3), 17–64 (1996)

    CrossRef  Google Scholar 

  25. Stickel, M.E.: A Prolog technology theorem prover: a new exposition and implementation in Prolog. Theor. Comput. Sci. 104(1), 109–128 (1992)

    CrossRef  MathSciNet  Google Scholar 

  26. Yamasaki, S., Kurose, Y.: A sound and complete procedure for a general logic program in non-floundering derivations with respect to the 3-valued stable model semantics. Theor. Comput. Sci. 266(1–2), 489–512 (2001)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sakharov, A. (2021). Inference Methods for Evaluable Knowledge Bases. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Application in Informatics. CoMeSySo 2021. Lecture Notes in Networks and Systems, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-030-90318-3_41

Download citation