Skip to main content

Detection of Steel Surface Defects Using U-Net with Pre-trained Encoder

  • Conference paper
  • First Online:
Software Engineering Application in Informatics (CoMeSySo 2021)

Abstract

Steel is one of the most widely building materials of modern times. Automatic detection of manufacturing defects in steel surfaces is a very important step for product quality control in the steel manufacturing industry. Traditional inspection systems require high maintenance costs and allow little flexibility. In this paper, we propose using the deep learning network U-Net for detecting defects. U-Net is a type of Convolutional Neural Networks that perform semantic segmentation of images, it was originally developed to achieve biomedical image segmentation, as U-Net requires smaller training sets compared with typical CNNs. We will present that segmentation can be done with promising results when using the U-Net model with pre-trained encoder; as transfer learning increases the accuracy and stability of the object detection models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, S.Y., Tama, B.A., Moon, S.J., Lee, S.: Steel surface defect diagnostics using deep convolutional neural network and class activation map. Appl. Sci. 9(24), 5449 (2019). https://doi.org/10.3390/app9245449

    Article  Google Scholar 

  2. Prappacher, N., Bullmann, M., Bohn, G., Deinzer, F., Linke, A.: Defect detection on rolling element surface scans using neural image segmentation. Appl. Sci. vol. 10(9) (2020). https://doi.org/10.3390/app10093290

  3. Wang, S., Xia, X., Ye, L., Yang, B.: Automatic detection and classification of steel surface defect using deep convolutional neural networks. Metals (Basel) 11(3), 1–23 (2021). https://doi.org/10.3390/met11030388

    Article  Google Scholar 

  4. Fu, J., Zhu, X., Li, Y.: Recognition of surface defects on steel sheet using transfer learning. arXiv preprint arXiv:1909.03258. 7 Sept 2019

  5. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. J. Comput. Higher Educ. 2014(1), 50. Springer, New York (2014). https://doi.org/10.1186/1687-5281-2014-50

  6. Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8887, pp. 668–677. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14249-4_64

  7. Khanh, T.L.B., et al.: Enhancing U-Net with spatial-channel attention gate for abnormal tissue segmentation in medical imaging. Appl. Sci. 10(17), 5729 (2020). https://doi.org/10.3390/app10175729

    Article  Google Scholar 

  8. Ibtehaz, N., Rahman, M.S.: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment (2020). https://cvit.iiit.ac.in/ncvpripg19/. Accessed 13 Mar 2021

  11. Sultana, F., Sufian, A., Dutta, P.: Evolution of image segmentation using deep convolutional neural network: a survey. Knowl.-Based Syst. 201, 106062 (2020)

    Google Scholar 

  12. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 encoder pre-trained on imagenet for image segmentation. https://github.com/ternaus/TernausNet. Accessed 13 Mar 2021

  13. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  14. Alam, S., Tomar, N.K., Thakur, A., Jha, D., Rauniyar, A.: Automatic polyp segmentation using U-Net-ResNet50 (2020). http://arxiv.org/abs/2012.15247. Accessed 13 Mar 2021

  15. Shvets, A.A., Iglovikov, V.I., Rakhlin, A., Kalinin, A.A.: Angiodysplasia detection and localization using deep convolutional neural networks. In: Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, pp. 612–617, Jan 2019. https://doi.org/10.1109/ICMLA.2018.00098

  16. Abdur Rehman, N., Saif, U., Chunara, R.: Deep landscape features for improving vector-borne disease prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 44–51 (2019)

    Google Scholar 

  17. Alex, D.M., Abraham Chandy, D.: Investigations on performances of pre-trained U-Net models for 2D ultrasound kidney image segmentation. In: Miraz, M.H., Excell, P.S., Ware, A., Soomro, S., Ali, M. (eds.) iCETiC 2020. LNICSSITE, vol. 332, pp. 185–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60036-5_13

    Chapter  Google Scholar 

  18. Severstal: Steel Defect Detection ,Kaggle. https://www.kaggle.com/c/severstal-steel-defect-detection. Accessed 13 Mar 2021

  19. Ali, A., Chramcov, B., Jasek, R., Katta, R., Krayem, S.: Classification of Plant Diseases Using Convolutional Neural Networks. In: Silhavy, Radek (ed.) CSOC 2021. LNNS, vol. 229, pp. 268–275. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77445-5_24

    Chapter  Google Scholar 

  20. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization, Dec. 2015. https://arxiv.org/abs/1412.6980v9. Accessed 13 Mar 2021

  21. Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2020). https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasin Katta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, A.A., Chramcov, B., Jasek, R., Katta, R., Krayem, S., Kadi, M. (2021). Detection of Steel Surface Defects Using U-Net with Pre-trained Encoder. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Application in Informatics. CoMeSySo 2021. Lecture Notes in Networks and Systems, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-030-90318-3_18

Download citation

Publish with us

Policies and ethics