Skip to main content

Hydrological Impact of Landuse Conversion

  • Chapter
  • First Online:
Land Acquisition, Industrialization and Livelihoods

Abstract

The study area is under Sundra catchment that is connected through a systematic interaction of land, water, soil, land use and livelihood. Any significant changes in one part leads to considerable downstream impacts. Changes in the land use land cover (LULC) under the industrial project caused more runoff, high intensity of soil erosion and water scarcity in all the downstream mouzas. This chapter is focussed on creating an expected water budget due to land use conversion of the study area. Model watershed management plan isĀ also prepared using recent GIS techniques that recommend constructing farm ponds at suitable location to reduce the intensity of flood at the lower ridge and utilize water in dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Jabari, S.J., Sharkh, M.A. and Mimi, Z., 2007. Estimation of runoff for agricultural watershed using SCS curve number and GIS. Birzeit University.

    Google ScholarĀ 

  • Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), p.D05109.

    Google ScholarĀ 

  • Arnett, R.R., 1971. Slope form and geomorphological process an Australian example. Institute of British Geographers. Vol-3, pp. 81ā€“92.

    Google ScholarĀ 

  • Beighley, R.E., Melack, J.M. and Dunne, T., 2003. Impacts of California's climatic regimes and coastal land use change on streamflow characteristics. Journal of American Water Resources Association, 39(6), pp. 1419ā€“1433.

    Google ScholarĀ 

  • Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Jobes, T.H., Donigian Jr, A.S. and Johanson, R., 2001. Hydrological simulation program-Fortran: HSPF version 12 userā€™s manual. AQUA TERRA Consultants, Mountain View, California.

    Google ScholarĀ 

  • Biswas, A.K., 2004. From Mar del Plata to Kyoto: an analysis of global water policy dialogue. Global Environmental Change, 14, pp.81ā€“88.

    Google ScholarĀ 

  • Bloom, A.L., 1998. Geomorphology: a systematic analysis of late Cenozoic landforms. Prentice Hall, pp. 498.

    Google ScholarĀ 

  • Booth, D.B., 1990. Stream-channel incision following drainage-basin urbanization. JAWRA Journal of the American Water Resources Association, 26(3), pp.407ā€“417.

    Google ScholarĀ 

  • Brath, A., Montanari, A. and Moretti, G., 2006. Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology, 324(1), pp.141ā€“153.

    Google ScholarĀ 

  • Carter, C.S. and Chorley, R.J., 1961. Early slope development in an expanding stream system. Geological Magazine, 98(02), pp.117ā€“130.

    Google ScholarĀ 

  • Chang, H., 2007. Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area, Oregon, USA. Hydrological Processes, 21(2), pp.211ā€“222.

    Google ScholarĀ 

  • Chow, V.T., Maidment, D.R. and Mays, L.W., 1988. Applied hydrology.

    Google ScholarĀ 

  • Cluff, C.B., 1974. Engineering aspects of water harvesting research at the University of Arizona. Proc. Water Harv. Symp. Phoenix, Arizona, pp. 27ā€“29.

    Google ScholarĀ 

  • Costa, M.H., Botta, A. and Cardille, J.A., 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 283(1), pp.206ā€“217.

    Google ScholarĀ 

  • Crooks, S. and Davies, H., 2001. Assessment of land use change in the Thames catchment and its effect on the flood regime of the river. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7), pp.583ā€“591.

    Google ScholarĀ 

  • De Roo, A., Odijk, M., Schmuck, G., Koster, E. and Lucieer, A., 2001. Assessing the effects of land use changes on floods in the Meuse and Oder catchment. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7), pp.593ā€“599.

    Google ScholarĀ 

  • De Souza, A., 2010. Water and Development: Forging Green Communities for Watersheds. Orient Blackswan.

    Google ScholarĀ 

  • Dunne, T. and Leopold, L., 1978. Water in environmental planning WH Freeman. San Francisco, CA, 50.

    Google ScholarĀ 

  • Franczyk, J. and Chang, H., 2009. The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrological Processes, 23(6), pp.805ā€“815.

    Google ScholarĀ 

  • Goudie, A., 1990. Geomorphological Techniques. 2nd Ed, Unwin Hyman, pp. 482.

    Google ScholarĀ 

  • Graf, W.L., 1975. The impact of suburbanization on fluvial geomorphology. Water Resources Research, 11(5), pp.690ā€“692.

    Google ScholarĀ 

  • Graham, D.N. and Butts, M.B., 2005. Flexible, integrated watershed modelling with MIKE SHE. Watershed models, 849336090, pp.245ā€“272.

    Google ScholarĀ 

  • Hammer, T.R., 1972. Stream channel enlargement due to urbanization. Water Resources Research, 8(6), pp.1530ā€“1540.

    Google ScholarĀ 

  • Hamon, W.R., 1963. Computation of direct runoff amounts from storm rainfall. publisher not identified.

    Google ScholarĀ 

  • Harbor, J.M., 1994. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. Journal of the American Planning Association, 60(1), pp.95ā€“108.

    Google ScholarĀ 

  • Heathcote, I. W., 2009. Integrated watershed management principles and practice. 2nd Ed, John Wiley and Sons Inc. USA, pp. 1ā€“439.

    Google ScholarĀ 

  • Horton, R.E., 1939. Analysis of runoff-plat experiments with varying infiltration-capacity. Eos, Transactions American Geophysical Union, 20(4), pp.693ā€“711.

    Google ScholarĀ 

  • Horton, R.E., 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), pp.275ā€“370.

    Google ScholarĀ 

  • Howard, A.D., 1997. Badland morphology and evolution: Interpretation using a simulation model. Earth Surface Processes and Landforms, 22(3), pp.211ā€“227.

    Google ScholarĀ 

  • Jackson, T.J., Ragan, R.M. and Fitch, W.N., 1977. Test of Landsat-based urban hydrologic modeling.

    Google ScholarĀ 

  • Jensen, M.E., Burman, R.D. and Allen, R.G., 1990. Evapotranspiration and irrigation water requirements. ASCE.

    Google ScholarĀ 

  • Klein, R.D., 1979. Ubranization and stream quality impairment. Water Resources Bulletin, 15(4), pp.948ā€“963.

    Google ScholarĀ 

  • Koudstaal, R., Rijsberman, F.R. and Savenije, H., 1992. Water and sustainable development. Natural Resources Forum, Vol. 16, No. 4, pp. 277ā€“290.

    Google ScholarĀ 

  • Kirkby, M. J., 1971. Hillslope process-response models based on the continuity equation. Institute of British Geographers Special Publication (3), pp. 15ā€“30.

    Google ScholarĀ 

  • Kumar, P., Tiwart, K.N. and Pal, D.K., 1991. Establishing SCS runoff curve number from IRS digital database. Journal of the Indian Society of Remote Sensing, 19(4), pp.245ā€“252.

    Google ScholarĀ 

  • Kumar, R., Chatterjee, C., Singh, R.D., Lohani, A.K. and Kumar, S., 2007. Runoff estimation for an ungauged catchment using geomorphological instantaneous unit hydrograph (GIUH) models. Hydrological Processes, 21(14), pp.1829ā€“1840.

    Google ScholarĀ 

  • Makurira, H., Mul, M.L., Vyagusa, N.F., Uhlenbrook, S. and Savenije, H.H.G., 2007. Evaluation of community-driven smallholder irrigation in dryland South Pare Mountains, Tanzania: A case study of Manoo micro dam. Physics and Chemistry of the Earth, Parts A/B/C, 32(15), pp.1090ā€“1097.

    Google ScholarĀ 

  • Miller, S. N., Kepner, W. G., Mehffey, M. H., Harnandez, M., Miller, R. C., Goodrich, D. C., Devonald, K. N., Heggem, D. T., and Miller, W. P., 2002. Integrating landscape assessment and hydrological modelling for land cover change analysis. Journal of American Water Resources Association, 38(4), pp. 195ā€“129.

    Google ScholarĀ 

  • Moitra Maiti, M., 2008. Crisis of water and its impact on the social environment of Darjiling Town. Unpubished Ph.D Thesis (Science), University of Calcutta, pp. 1ā€“58.

    Google ScholarĀ 

  • Moitra Maiti, M. Maiti R. K., 2009. Sub watersheds for Rational Management of Water Crisis of Darjilling Town, W.B. Geographical Review of India, 71(2), pp. 117ā€“129.

    Google ScholarĀ 

  • Moitra Maiti, M., 2010. Cognition of the interworking of process associated to water scarcity and feasibility of water harvesting- An action research on a representative drainage basin on Silaboti Kansabati interfluve, West Bengal. Indian council of Social Science Research, F. no- RP/02/121/2009, pp. 1ā€“180.

    Google ScholarĀ 

  • Morisawa, M., 1985. Rivers, Forms and Processes, Longman, pp. 209.

    Google ScholarĀ 

  • Mosse, D., 1997. The Ideology and Polities of Community Participation: Tank Irrigation Development in Colonial and Contemporary Tamil Nadu. In Grillo, R.D. and Stirrat, R.L. (ed) Discourses of Development. Anthropological Perspective, Oxford & New York, pp. 255ā€“291.

    Google ScholarĀ 

  • Mustafa, Y.M., Amin, M.S.M., Lee, T.S. and Shariff, A.R.M., 2012. Evaluation of land development impact on a tropical watershed hydrology using remote sensing and GIS. Journal of spatial hydrology, 5(2).

    Google ScholarĀ 

  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R., 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

    Google ScholarĀ 

  • Neller, R.J., 1988. A comparison of channel erosion in small urban and rural catchments, Armidale, New South Wales. Earth Surface Processes and Landforms, 13(1), pp.1ā€“7.

    Google ScholarĀ 

  • Oā€™Malley, L.S.S., 1911. Bengal District Gazetteers: Medinipur. Bengal Secretariat Book Depot.

    Google ScholarĀ 

  • Pandey, R., 2002. Development of Roof Top Water Harvesting System in Darjeeling. The Administrator, vol-45 Dec, pp. 97ā€“105.

    Google ScholarĀ 

  • Paul, M.J and Meyer, J.L., 2001. Streams in the urban landscape. Annual Review of Ecological Evolution and Systematics, 32, pp. 333ā€“365.

    Google ScholarĀ 

  • Penman, H. L., 1963. Vegetation and Hydrology, Tech. Communication No. 53, Commonwealth Bureau of Soils, Harpenden, England, pp. 125.

    Google ScholarĀ 

  • Penman, H.L., 1948, April. Natural evaporation from open water, bare soil and grass. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 193, No. 1032, pp. 120ā€“145). The Royal Society.

    Google ScholarĀ 

  • Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America bulletin, 67(5), pp.597ā€“646.

    Google ScholarĀ 

  • Schwab, G.O., Fangmeier, D.D., Elliot, W.J. and Frevert, R.K., 1993. Soil and water conservation engineering. John Wiley & Sons, Inc.

    Google ScholarĀ 

  • Strahler, A.N., 1950. Equilibrium theory of erosional slopes approached by frequency distribution analysis. Part I. American Journal of Science, 248, pp.673ā€“696.

    Google ScholarĀ 

  • Teegavarapu, R.S. and Chandramouli, V., 2005. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312(1), pp.191ā€“206.

    Google ScholarĀ 

  • Tucker, G.E., Catani, F., Rinaldo, A. and Bras, R.L., 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), pp.187ā€“202.

    Google ScholarĀ 

  • Shee, S. P. and Maiti, R. K., 2012. Assessing the necessity of watershed management at Sundra Basin, Paschim Medinipur, West Bengal. Journal of Indian Geomorphology, Vol-1, pp. 107ā€“113.

    Google ScholarĀ 

  • United States Development of Agriculture (USDA), Soil Conservation Service (SCS)., 1972. Hydrology. In National Engineering Hand book, Section 4, GPO, Washington, DC.

    Google ScholarĀ 

  • Van der Zaag, P., 2005. Integrated Water Resources Management: Relevant concept or irrelevant buzzword? A capacity building and research agenda for Southern Africa. Physics and Chemistry of the Earth, Parts A/B/C, 30(11), pp.867ā€“871.

    Google ScholarĀ 

  • Vƶrƶsmarty, C.J., Green, P., Salisbury, J. and Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. science, 289(5477), pp.284ā€“288.

    Google ScholarĀ 

  • Wang, G., Zhang, Y., Liu, G. and Chen, L., 2006. Impact of land-use change on hydrological processes in the Maying River basin, China. Science in China Series D: Earth Sciences, 49(10), pp.1098ā€“1110.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shee, S.P., Maiti, R. (2022). Hydrological Impact of Landuse Conversion. In: Land Acquisition, Industrialization and Livelihoods. Springer, Cham. https://doi.org/10.1007/978-3-030-90244-5_5

Download citation

Publish with us

Policies and ethics