Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Experimental data is the basis for the qualification and performance validation of the HGCAL prototypes presented in this thesis. This data was recorded with single prototype modules and with various prototype calorimeter configurations being exposed to particle beams. Besides that, measurements on the electrical properties of prototype silicon sensors prior to their assembly to modules were made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both electrons with negative and with positive polarity, i.e. positrons, are implied. Both types are referred to as “electrons” for simplicity in this section.

References

  1. Brondolin E, et al. (2019) ARRAY: an open source, modular and probe-card based system with integrated switching matrix for characterisation of large area silicon pad sensors. Nucl Inst Methods Phys Res, A 940:168–173. https://doi.org/10.1016/j.nima.2019.06.007

  2. CMS Collaboration (2017) The phase-2 upgrade of the CMS endcap calorimeter. CERN-LHCC-2017-023 (CMS-TDR-019). https://cds.cern.ch/record/2293646

  3. Keysight Technologies (2019) Impedance measurement handbook - a guide to measurement technology and techniques, 6th edn. https://literature.cdn.keysight.com/litweb/pdf/5950-3000.pdf. Accessed 31 July 2019

  4. EP-LCD, CERN, “HexDAQ.” https://gitlab.cern.ch/CLICdp/HGCAL/HGCAL_sensor_tests/releases. Tag: v1.3.22. Accessed 16 July 2019

  5. Borg J, et al. (2017) SKIROC2\(\_\)CMS an ASIC for testing CMS HGCAL. JINST 12:C02019. https://doi.org/10.1088/1748-0221/12/02/c02019

  6. Rubinov P (2016) Development of flexible, scalable, low cost readout for beam tests of the high granularity calorimeter for the CMS endcap. https://doi.org/10.1109/NSSMIC.2016.8069667

  7. Akchurin N, et al. (2018) First beam tests of prototype silicon modules for the CMS high granularity endcap calorimeter. JINST 13:P10023. https://doi.org/10.1088/1748-0221/13/10/p10023

  8. EUDAQ Development Team (2016) EUDAQ user manual (v1.7). http://eudaq.github.io/manual/EUDAQUserManual_v1.pdf. Accessed 18 Nov 2019

  9. Liu Y (2017) EUDAQ2 user manual. https://cds.cern.ch/record/2314266

  10. Acar B, et al. (2021) The DAQ system of the 12,000 channel CMS high granularity calorimeter prototype. JINST 16:T04001. https://doi.org/10.1088/1748-0221/16/04/T04001

  11. CMS Collaboration (2017) The CMS trigger system. JINST 12:P01020. https://doi.org/10.1088/1748-0221/12/01/P01020

  12. Spannagel S (2016) Test beam measurements for the upgrade of the CMS pixel detector and measurement of the top quark mass from differential cross sections. PhD thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg, Germany. http://dx.doi.org/10.3204/DESY-THESIS-2016-010

  13. Ahlburg P, et al. (2020) EUDAQ - A data acquisition software framework for common beam telescopes. JINST 15:P01038. https://doi.org/10.1088/1748-0221/15/01/p01038

  14. CAEN (2010) Technical information manual, MOD. V1290 A/N, revision n. 11

    Google Scholar 

  15. CAEN (2011) Technical information manual, MOD. V1742, revision n. 0

    Google Scholar 

  16. Behnke T, et al. (2007) Test beams at DESY. https://www.eudet.org/e26/e28/e182/e283/eudet-memo-2007-11.pdf

  17. Diener R, et al. (2019) The DESY II test beam facility. Nucl Instrum Meth A 922:265–286. https://doi.org/10.1016/j.nima.2018.11.133

  18. Jansen H, et al. (2016) Performance of the EUDET-type beam telescopes. EPJ Tech Instrum 3:7. https://doi.org/10.1140/epjti/s40485-016-0033-2

  19. Linac II and PIA (2019) https://min.desy.de/linac_ii__pia/. Accessed 19 July 2019

  20. PETRA III (2019) http://petra3.desy.de. Accessed 18 July 2019

  21. Matthews JL, Owens RO (1973) Accurate formulae for the calculation of high energy electron bremsstrahlung spectra. Nucl Instrum Meth 111:157–168. https://doi.org/10.1016/0029-554X(73)90105-5

  22. Schütz A (2015) Simulation of particle fluxes at the DESY-II test beam facility. Master’s thesis, Karlsruhe Institute of Technology. http://dx.doi.org/10.3204/DESY-THESIS-2015-017

  23. Baudot J, et al. (2009) First test results of MIMOSA-26, a fast CMOS sensor with integrated zero suppression and digitized output. IEEE Nucl Sci Symp Conf Rec, pp 1169–1173. https://doi.org/10.1109/NSSMIC.2009.5402399

  24. User manual (2019) https://telescopes.desy.de/User_manual. Accessed 20 July 2019

  25. Cussans D (2009) Description of the JRA1 trigger logic unit (TLU), v0.2c. https://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf

  26. CMS Collaboration (2018) Observation of \(t\bar{t}H\) production. Phys Rev Lett 120:231801. https://doi.org/10.1103/PhysRevLett.120.231801

  27. CMS Collaboration (2018) Search for \(t\bar{t}H\) production in the \(H\rightarrow b\bar{b}\) decay channel with leptonic \(t\bar{t}\) decays in proton-proton collisions at \(\sqrt{s}\)=13 TeV with the CMS detector. CMS PAS HIG-17-026. https://cds.cern.ch/record/2308267

  28. CERN (2019) The super proton synchrotron. https://home.cern/science/accelerators/super-proton-synchrotron. Accessed 20 July 2019

  29. Abdullin S, et al. (2008) Design, performance, and calibration of CMS hadron-barrel calorimeter wedges. Eur Phys J C 55:159–171. https://doi.org/10.1140/epjc/s10052-008-0573-y

  30. Charitonidis N (2019) H2 beam line, CERN secondary beam areas. https://sba.web.cern.ch/sba/BeamsAndAreas/H2/H2_presentation.html. Accessed 20 July 2019

  31. Atherton HW, et al. (1980) Precise measurements of particle production by 400 GeV/c protons on beryllium targets. CERN 80-07. https://doi.org/10.5170/CERN-1980-007

  32. SPY Collaboration (1998) Pion yield from 450 GeV/c protons on beryllium. Phys Lett B 425:208–214. https://doi.org/10.1016/S0370-2693(98)00237-8

  33. Marchionni A (1999) Measurement of charged particle production from 450 GeV/c protons on beryllium. Nucl Phys B - Proc Suppl 75:194–196. https://doi.org/10.1016/S0920-5632(99)00240-6

  34. Abgrall N, et al. (2014) NA61/SHINE facility at the CERN SPS: beams and detector system. JINST 9:P06005. https://doi.org/10.1088/1748-0221/9/06/p06005

  35. Sefkow F, Simon F (2018) A highly granular SiPM-on-tile calorimeter prototype. J Phys: Confer Ser 1162. https://doi.org/10.1088/1742-6596/1162/1/012012

  36. Charpak G, et al. (1968) The use of multiwire proportional counters to select and localize charged particles. Nucl Instrum Meth 62:262–268. https://doi.org/10.1016/0029-554X(68)90371-6

  37. Spanggaard J (1998) Delay wire chambers - a users guide. http://cds.cern.ch/record/702443

  38. Manarin A, Vismara G (1985) The delay wire chamber (DWC) description. http://cds.cern.ch/record/97367. LEP/BI-TA/NOTE 85-3

  39. Quast T (2019) https://github.com/HGCDAQ/eudaq/tree/tb2018-October/user/cmshgcal_dwc. Accessed 18 Nov 2019

  40. Brianza L, et al. (2018) Response of microchannel plates to single particles and to electromagnetic showers. Nucl Instrum Meth A 797:216–221. https://doi.org/10.1016/j.nima.2015.06.057

  41. Barnyakov AY, et al. (2007) Investigation and development of microchannel plate phototubes. Nucl Instrum Meth A 572:404–407. https://doi.org/10.1016/j.nima.2006.10.276

  42. Quast T (2019) https://github.com/HGCDAQ/eudaq/tree/tb2018-October/user/cmshgcal_mcp. Accessed 18 Nov 2019

  43. Dannheim D, et al. (2013) Particle identification with cherenkov detectors in the 2011 CALICE tungsten analog hadronic calorimeter test beam at the CERN SPS. https://cds.cern.ch/record/1545809

  44. Charitonidis N, Karyotakis Y, Gatignon L (2017) Estimation of the R134a gas refractive index for use as a Cherenkov radiator, using a high energy charged particle beam. Nucl Instrum Meth B 410:134–138. https://doi.org/10.1016/j.nimb.2017.08.020

  45. HERD The High Energy cosmic Radiation Detection facility. http://herd.ihep.ac.cn/. Accessed 24 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorben Quast .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quast, T. (2021). Experimental Infrastructure. In: Beam Test Calorimeter Prototypes for the CMS Calorimeter Endcap Upgrade. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-90202-5_6

Download citation

Publish with us

Policies and ethics