Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 134 Accesses

Abstract

Particle energy measurements are an integral part in many particle physics experiments nowadays. This task is performed by calorimeters. Besides the completion of the four-vector of isolated, charged particles, the relevance of calorimeters has increased ever since the discovery of the W bosonĀ [1] because of their central role in the reconstruction of the energy flow in complex event signatures (jets and missing transverse energy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference to alternative definitions, e.g.Ā by Rossi, are irrelevant to this discussion.

References

  1. UA1 Collaboration (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s}\)=540GeV. Phys Lett B122:103ā€“116. https://doi.org/10.1016/0370-2693(83)91177-2

  2. Patrignani C, et al. (Particle Data Group) The review of particle physics. Chin Phys C 40:100001. https://doi.org/10.1088/1674-1137/40/10/100001

  3. Wigmans R (2017) Calorimetry - energy measurements in particle physics, No.Ā 107, 2ndĀ edn. Oxford Science Publications, Oxford

    Google ScholarĀ 

  4. Einstein A (1905) Ɯber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 322:132ā€“148. https://doi.org/10.1002/andp.19053220607

  5. Compton AH (1923) A quantum theory of the scattering of X-rays by light elements. Phys Rev 21:483ā€“502. https://doi.org/10.1103/PhysRev.21.483

  6. Berman BL, Fultz SC (1975) Measurements of the giant dipole resonance with monoenergetic photons. Rev Mod Phys 47:713ā€“761. https://doi.org/10.1103/RevModPhys.47.713

  7. Particle Data Group (2012) Atomic and nuclear properties of materials for more than 300 materials. http://pdg.lbl.gov/2012/AtomicNuclearProperties/. Accessed 07 Sep 2019

  8. Israeli Y (2018) Energy reconstruction in highly granular calorimeters for future electron-positron colliders. PhD thesis, Technische UniversitƤt MĆ¼nchen, Germany. http://mediatum.ub.tum.de/?id=1459326

  9. Ott K (1953) Die Einzelprozesse der Elektronen und Lichtquanten. Springer, Berlin, ppĀ 320ā€“329. https://doi.org/10.1007/978-3-642-87230-3_26

  10. Almadi U (1981) Fluctuations in calorimetry measurements. Physica Scripta 23:409ā€“424. https://doi.org/10.1088/0031-8949/23/4a/012

  11. Livan M, Wigmans R (2013) Misconceptions about calorimetry. arXiv:1704.00661 [physics.ins-det]

  12. Gabriel TA, et al. (1994) Energy dependence of hadronic activity. Nucl Instrum Meth A 338: 336ā€“347. https://doi.org/10.1016/0168-9002(94)91317-X

  13. Bernstein A, et al. (1993) Beam tests of the ZEUS barrel calorimeter. Nucl Instrum Meth A 336:23ā€“52. https://doi.org/10.1016/0168-9002(93)91078-2

  14. Lee S, Livan M, Wigmans R (2018) Dual-readout calorimetry. Rev Mod Phys 90:025002. https://doi.org/10.1103/RevModPhys.90.025002

  15. Adloff C, et al. (2012) Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques. JINST 7:P09017. https://doi.org/10.1088/1748-0221/7/09/p09017

  16. Repond J, et al. (2018) Hadronic energy resolution of a combined high granularity scintillator calorimeter system. JINST 13:P12022. https://doi.org/10.1088/1748-0221/13/12/p12022

  17. ATLAS Collaboration (1996) ATLAS liquid-argon calorimeter: technical design report. CERN-LHCC-96-041. https://cds.cern.ch/record/331061

  18. Agostinelli S, et al. (2003) GEANT4: a simulation toolkit. Nucl Instrum Meth 506 no.Ā 250ā€“303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  19. Allison J, et al. (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270ā€“278. https://doi.org/10.1109/TNS.2006.869826

  20. Allison J, et al. (2016) Recent developments in Geant4. Nucl Instrum Meth A 835:186. https://doi.org/10.1016/j.nima.2016.06.125

  21. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335ā€“341. https://doi.org/10.2307/2280232

  22. Geant4 Collaboration (2019) Physics reference manual. http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf. Accessed 05 Nov 2019

  23. Wright DH, Kelsey MH (2015) The Geant4 bertini cascade. Nucl Instrum Meth A 804:175ā€“188. https://doi.org/10.1016/j.nima.2015.09.058

  24. Folger G, Wellisch JP (2003) String parton models in Geant4. arXiv:0306007 [nucl-th]

  25. Andersson B, Gustafson G, Nilsson-Almqvist B (1987) A model for low-p\(_\text{T}\) hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl Phys B 281:289ā€“309. https://doi.org/10.1016/0550-3213(87)90257-4

  26. Banerjee S, et al. (2019) CMS simulation in the HL-LHC Era. https://hepsoftwarefoundation.org/cwp/hsf-cwp-011-CMS-Simu-CWP-SDiego.pdf. Accessed 01 Nov 2019

  27. Amadio G, et al. (2015) The GeantV project: preparing the future of simulation. J Phys: Confer Ser 664:072006. https://doi.org/10.1088/1742-6596/664/7/072006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorben Quast .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quast, T. (2021). Shower Physics and Calorimetry. In: Beam Test Calorimeter Prototypes for the CMS Calorimeter Endcap Upgrade. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-90202-5_3

Download citation

Publish with us

Policies and ethics