Skip to main content

Abstract

The Internet of Things (IoT) concept is changing the world by connecting a massive number of electronics devices to the internet. Due to the large number of connected devices, some challenges and opportunities were created from the hardware development to the cloud computing. The energy constrained IoT devices, such as the energy harvesting or small battery powered, have the lifetime significantly affected by the higher power consumption at the wireless communication, performed by the RF transceiver. Thus, the transmitter and receiver hardware optimization together to the relaxed communication standard requirements have an important impact to the device lifetime increasing. Nowadays, a complete 2.4 GHz receiver can have power consumption as low as 0.5 mW or smaller, when powered with reduced voltage level sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abdelfattah, M. Swilam, B. Dupaix, S. Smith, A. Fayed, W. Khalil. An on-chip resonant-gate-drive switched-capacitor converter for near-threshold computing achieving 70.2% efficiency at 0.92 A/mm2 current density and 0.4 V output, in 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco (IEEE, New York, 2018), pp. 438–440. https://doi.org/10.1109/ISSCC.2018.8310372

  2. M. Alioto, Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE Trans. Circ. Syst. I: Regul. Pap. 59(1), 3–29 (2012). https://doi.org/10.1109/TCSI.2011.2177004

  3. H.A. Alzaher, N. Tasadduq, F.S. Al-Ammari, Optimal low power complex filters. IEEE Trans. Circ. Syst. I: Regul. Pap. 60(4), 885–895 (2013). https://doi.org/10.1109/TCSI.2012.2209293

  4. A. Balankutty, S.A. Yu, Y. Feng, P.R. Kinget, A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications. IEEE J. Solid-State Circ. 45(3), 538–553 (2010). https://doi.org/10.1109/JSSC.2009.2039827

  5. Bluetooth-SIG. Bluetooth 5 Core Specification, 2016. https://www.bluetooth.com/specifications/%0Abluetooth-core-specification

  6. C. Bryant, H. Sjoland, A 0.55 mW SAW-less receiver front-end for bluetooth low energy applications. IEEE J. Emerg. Select. Top. Circ. Syst. 4(3), 262–272 (2014). https://doi.org/10.1109/JETCAS.2014.2337153

  7. K.H. Chang, Bluetooth: a viable solution for IoT? IEEE Wirel. Commun. 21(6), 6–7 (2014). https://doi.org/10.1109/MWC.2014.7000963

  8. S. Chatterjee, Y. Tsividis, P. Kinget, 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circ. 40(12), 2373–2387 (2005). https://doi.org/10.1109/JSSC.2005.856280

  9. L. Columbus, 2017 Roundup Of Internet Of Things Forecasts, 2017. https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#3c5378d11480

  10. L. Compassi-Severo, W. Van Noije, A 0.4-V 10.9-μW/pole third-order complex BPF for low energy RF receivers. IEEE Trans. Circ. Syst. I: Regul. Pap. 66(6), 2017–2026 (2019). ISSN:15580806. https://doi.org/10.1109/TCSI.2019.2906206

  11. M. De Matteis, S. D’Amico, A. Baschirotto, A 0.55 V 60 dB-DR fourth-order analog baseband filter. IEEE J. Solid-State Circ. 44(9), 2525–2534 (2009) https://doi.org/10.1109/JSSC.2009.2024801

  12. S.M. Demir, F. Al-Turjman, A. Muhtaroglu, Energy scavenging methods for WBAN applications: a review. IEEE Sens. J. 18(16), 6477–6488 (2018). https://doi.org/10.1109/JSEN.2018.2851187

  13. M. Ding, X. Wang, P. Zhang, Y. He, S. Traferro, K. Shibata, M. Song, H. Korpela, K. Ueda, Y.-h. Liu, C. Bachmann, K. Philips, A 0.8 V 0.8 mm2 bluetooth 5/BLE digital-intensive transceiver with a 2.3 mW phase-tracking RX utilizing a hybrid loop filter for interference resilience in 40 nm CMOS, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), ed. by IEEE, San Francisco, 2018 (IEEE, New York, 2018), pp. 446–448. https://doi.org/10.1109/ISSCC.2018.8310376

  14. J.F. Duque-Carrillo, Control of the common-mode component in CMOS continuous-time fully differential signal processing. Analog Integr. Circ. Signal Process. 4(2), 131–140 (1993) https://doi.org/10.1007/BF01254864

  15. R. Harjani, R.K. Palani, Design of PVT tolerant inverter based circuits for low supply voltages. Proc. Custom Integr. Circ. Conf. 1(3), 2015. https://doi.org/10.1109/CICC.2015.7338424

  16. H.D. Hernandez, L.C. Severo, W.A.M.V. Noije, 0.5 V 10 MS/s 9-bits asynchronous SAR ADC for BLE receivers in 180 nm CMOS technology, in Proceedings of the IEEE Systems on Chip Conference (SOCC2018), Washington DC, 2018 (IEEE, New york, 2018)

    Google Scholar 

  17. J.-Y. Hsieh, K.-Y. Lin, A 0.6-V low-power variable-gain LNA in 0.18-$∖umu$m CMOS technology. IEEE Trans. Circ. Syst. II: Express Briefs 67(1), 23–26 (2020). ISSN:1549-7747. https://doi.org/10.1109/TCSII.2019.2902301. https://ieeexplore.ieee.org/document/8654671/

  18. E. Kargaran, D. Manstretta, R. Castello, A 30 μW, 3.3 dB NF CMOS LNA for wearable WSN applications. Proceedings - IEEE International Symposium on Circuits and Systems, 2017, pp. 1–4. ISSN:02714310. https://doi.org/10.1109/ISCAS.2017.8050597

  19. E. Kargaran, D. Manstretta, R. Castello, A sub-1 V, 220 μw receiver frontend for wearable wireless sensor network applications, in Proceedings - IEEE International Symposium on Circuits and Systems, 2018 May (2018), pp. 1–5. ISSN:02714310. https://doi.org/10.1109/ISCAS.2018.8351643

  20. E. Kargaran, C. Bryant, D. Manstretta, J. Strange, R. Castello, A sub-0.6 V, 330 μw, 0.15 mmˆ2 receiver front-end for bluetooth low energy (BLE) in 22 nm FD-SOI with zero external components, in Proceedings - 2019 IEEE Asian Solid-State Circuits Conference, A-SSCC 2019, vol. 6 (IEEE, New York, 2019), pp. 169–172. ISBN:9781728151069. https://doi.org/10.1109/A-SSCC47793.2019.9056899

  21. E. Kargaran, B. Guo, D. Manstretta, R. Castello, A sub-1-V, 350-$∖umu$ W, 6.5-dB integrated NF low-IF receiver front-end for IoT in 28-nm CMOS. IEEE Solid-State Circ. Lett. 2(4), 29–32 (2019). ISSN:2573-9603. https://doi.org/10.1109/LSSC.2019.2917870. https://ieeexplore.ieee.org/document/8718256/

  22. F.-W. Kuo, S. Binsfeld Ferreira, H.-N.R. Chen, L.-C. Cho, C.-P. Jou, F.-L. Hsueh, I. Madadi, M. Tohidian, M. Shahmohammadi, M. Babaie, R.B. Staszewski, A bluetooth low-energy transceiver with 3.7-mW all-digital transmitter, 2.75-mW high-IF discrete-time receiver, and TX/RX switchable on-chip matching network. IEEE J. Solid-State Circ. 52(4), 1144–1162 (2017). https://doi.org/10.1109/JSSC.2017.2654322

  23. F.-w. Kuo, S.B. Ferreira, R. Chen, L.-C. Cho, C.-P. Jou, M. Chen, M. Babaie, R.B. Staszewski, Towards ultra-low-voltage and ultra-low-power discrete-time receivers for Internet-of-Things, in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 1211–1214

    Google Scholar 

  24. Y.H. Liu, X. Huang, M. Vidojkovic, A. Ba, P. Harpe, G. Dolmans, H. De Groot, A 1.9 nJ/b 2.4 GHz multistandard (Bluetooth low energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. Digest of Technical Papers - IEEE International Solid-State Circuits Conference, vol. 56 (2013), pp. 446–447. https://doi.org/10.1109/ISSCC.2013.6487808

  25. Y.H. Liu, C. Bachmann, X. Wang, Y. Zhang, A. Ba, B. Busze, M. Ding, P. Harpe, G.-J. van Schaik, G. Selimis, H. Giesen, J. Gloudemans, A. Sbai, L. Huang, H. Kato, G. Dolmans, K. Philips, H. de Groot, A 3.7 mW-RX 4.4 mW-TX fully integrated Bluetooth Low-Energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40 nm CMOS, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, 2015 (IEEE, New York, 2015), pp. 1–3. https://doi.org/10.1109/ISSCC.2015.7063013

  26. Y.-H. Liu, V.K. Purushothaman, C. Lu, J. Dijkhuis, R.B. Staszewski, C. Bachmann, K. Philips, A 770 pJ/b 0.85 V 0.3 mm 2 DCO-based phase-tracking RX featuring direct demodulation and data-aided carrier tracking for IoT applications, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), vol. 60, San Francisco, 2017 (IEEE, New york, 2017), pp. 408–409. https://doi.org/10.1109/ISSCC.2017.7870434

  27. K.-H.L. Loh, 1.2 fertilizing AIoT from roots to leaves, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC) (IEEE, New York,2020), pp. 15–21. ISBN:978-1-7281-3205-1. https://doi.org/10.1109/ISSCC19947.2020.9062950. https://ieeexplore.ieee.org/document/9062950/

  28. J. Masuch, M. Delgado-Restituto, A 1.1-mW-RX -81.4-dBm sensitivity CMOS transceiver for Bluetooth lOW energy. IEEE Trans. Microw. Theory Tech. 61(4), 1660–1673 (2013). https://doi.org/10.1109/TMTT.2013.2247621

  29. M. Parvizi, K. Allidina, F. Nabki, M. El-Gamal, A 0.4 V ultra low-power UWB CMOS LNA employing noise cancellation. Proceedings - IEEE International Symposium on Circuits and Systems (2), 2369–2372 (2013). ISSN:02714310. https://doi.org/10.1109/ISCAS.2013.6572354

  30. M. Parvizi, K. Allidina, M.N. El-Gamal, Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 μW 0.6–4.2 GHz current-reuse CMOS LNA. IEEE J. Solid-State Circ. 51(3), 574–586 (2016) ISSN:00189200. https://doi.org/10.1109/JSSC.2015.2504413

  31. N. Pourmousavian, F.W. Kuo, T. Siriburanon, M. Babaie, R.B. Staszewski, A 0.5-V 1.6-mW 2.4-GHz fractional-N all-digital PLL for Bluetooth le with PVT-insensitive TDC using switched-capacitor doubler in 28-nm CMOS. IEEE J. Solid-State Circ. 53(9), 2572–2583 (2018). https://doi.org/10.1109/JSSC.2018.2843337

  32. J. Prummel, M. Papamichail, J. Willms, R. Todi, W. Aartsen, W. Kruiskamp, J. Haanstra, E. Opbroek, S. Rievers, P. Seesink, J. Van Gorsel, H. Woering, C. Smit, A 10 mW Bluetooth low-energy transceiver with On-chip matching. IEEE J. Solid-State Circ. 50(12), 3077–3088 (2015). https://doi.org/10.1109/JSSC.2015.2469674

  33. A. Rasekh, M. Sharif Bakhtiar, Design of low-power low-area tunable active RC filters. IEEE Trans. Circ. Syst. II: Express Briefs 65, 6–10 (2017). https://doi.org/10.1109/TCSII.2017.2658635

  34. B. Razavi, RF Microelectronics, vol. 53, 2th edn. (Prentice Hall, New York, 2012). https://doi.org/10.1017/CBO9781107415324.004

  35. S.S. Regulagadda, S. Nagaveni, A. Dutta, A 550-MW, 2.4-GHz ZigBee/BLE receiver front end for IoT applications in 180-nm CMOS, in 2018 16th IEEE International New Circuits and Systems Conference, NEWCAS 2018, 2018, pp. 48–52. https://doi.org/10.1109/NEWCAS.2018.8585629

  36. N. Reynders, W. Dehaene, Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits, 1st edn. (Springer, New York, 2015)

    Google Scholar 

  37. V. Roche, Semiconductor innovation: is the party over, or just getting started?, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC) (IEEE, New York, 2018), pp. 8–11. ISBN:978-1-5090-4940-0. https://doi.org/10.1109/ISSCC.2018.8310164. http://ieeexplore.ieee.org/document/8310164/

  38. T. Sano, M. Mizokami, H. Matsui, K. Ueda, K. Shibata, K. Toyota, T. Saitou, H. Sato, K. Yahagi, Y. Hayashi, A 6.3 mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network, in Digest of Technical Papers - IEEE International Solid-State Circuits Conference, vol. 58, 240–241 (2015). https://doi.org/10.1109/ISSCC.2015.7063015

  39. A.S. Sedra, K.C. Smith, Microeletrônica (Pearson, São Paulo, 2007)

    Google Scholar 

  40. A. Selvakumar, A. Liscidini, Current-recycling complex filter for bluetooth-low-energy applications. IEEE Trans. Circ. Syst. II: Express Briefs 62(4), 332–336 (2015). https://doi.org/10.1109/TCSII.2014.2387611

  41. A.H.M. Shirazi, H.M. Lavasani, M. Sharifzadeh, Y. Rajavi, S. Mirabbasi, M. Taghivand, A 980 μW 5.2 dB-NF current-reused direct-conversion bluetooth-low-energy receiver in 40 nm CMOS, in 2017 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, New York, 2017), pp. 1–4. ISBN:978-1-5090-5191-5. https://doi.org/10.1109/CICC.2017.7993647. http://ieeexplore.ieee.org/document/7993647/

  42. T. Taris, J.B. Begueret, Y. Deval, A 60 μW LNA for 2.4 GHz wireless sensors network applications, in Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium (V), (2011), pp. 1–4. ISSN:15292517. https://doi.org/10.1109/RFIC.2011.5940633

  43. B.J. Thijssen, E.A.M. Klumperink, P. Quinlan, B. Nauta, 30.4 A 370 μW 5.5 dB-NF BLE/BT5.0/IEEE 802.15.4-compliant receiver with >63 dB adjacent channel rejection at >2 channels offset in 22 nm FDSOI, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC) (IEEE, New York, 2020), pp. 466–468. ISBN:978-1-7281-3205-1. https://doi.org/10.1109/ISSCC19947.2020.9062973. https://ieeexplore.ieee.org/document/9062973/

  44. X. Wang, J. Van den Heuvel, G.-J. van Schaik, C. Lu, Y. He, A. Ba, B. Busze, M. Ding, Y.-H. Liu, N. Winkel, M. Wildeboer, C. Bachmann, K. Philips, A 0.9–1.2 V supplied, 2.4 GHz Bluetooth low energy 4.0/4.2 and 802.15.4 transceiver SoC optimized for battery life, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, vol. 2016, October, Lausanne, 2016 (IEEE, New York, 2016), pp. 125–128. https://doi.org/10.1109/ESSCIRC.2016.7598258

  45. A.C.W. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King, F. Lauria, J. Schiff, A.J. Burdett, A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J. Solid-State Circ. 48(1), 186–198 (2013). https://doi.org/10.1109/JSSC.2012.2221215

  46. L. Ye, C. Shi, H. Liao, R. Huang, Y. Wang, Highly power-efficient active-RC filters with wide bandwidth-range using low-gain push-pull Opamps. IEEE Trans. Circ. Syst. I: Regul. Pap. 60(1), 95–107 (2013)

    Google Scholar 

  47. H. Yi, W.-H. Yu, P.-I. Mak, J. Yin, R.P. Martins, A 0.18-V 382-μW Bluetooth low-energy receiver front-end with 1.33-nW sleep power for energy-harvesting applications in 28-nm CMOS. IEEE J. Solid-State Circ. 53(6), 1618–1627 (2018)

    Google Scholar 

  48. J. Yin, S. Yang, H. Yi, W.-H. Yu, P.-I. Mak, R.P. Martins, A 0.2 V energy-harvesting BLE transmitter with a micropower manager achieving 25% system efficiency at 0 dBm output and 5.2 nW sleep power in 28 nm CMOS, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC), pp. 450–452 (IEEE, New York, 2018). https://doi.org/10.1109/ISSCC.2018.8310378.

  49. F. Zhang, Y. Miyahara, B.P. Otis, Design of a 300-mV 2.4-GHz receiver using transformer-coupled techniques. IEEE J. Solid-State Circ. 48(12), 3190–3205 (2013) https://doi.org/10.1109/JSSC.2013.2280835

  50. F. Zhang, K. Wang, J. Koo, Y. Miyahara, B. Otis, A 1.6 mW 300 mV-Supply 2.4 GHz Receiver with − 94 dBm sensitivity for energy-harvesting applications, in 2013 IEEE International Solid-State Circuits Conference (2013), pp. 456–458. ISBN:9781467345163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Severo, L.C., Van Noije, W.M.A. (2022). Introduction. In: Ultra-low Voltage Low Power Active-RC Filters and Amplifiers for Low Energy RF Receivers . Springer, Cham. https://doi.org/10.1007/978-3-030-90103-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90103-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90102-8

  • Online ISBN: 978-3-030-90103-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics