Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)
CrossRef
Google Scholar
Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: A hybrid simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs: performance evaluation considering normal and uniform distribution of mesh clients. In: Barolli, L., Kryvinska, N., Enokido, T., Takizawa, M. (eds.) NBiS 2018. LNDECT, vol. 22, pp. 42–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98530-5_4
CrossRef
Google Scholar
Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for wmns considering different distributions of mesh clients. In: Barolli, L., Xhafa, F., Javaid, N., Enokido, T. (eds.) IMIS 2018. AISC, vol. 773, pp. 32–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93554-6_3
CrossRef
Google Scholar
Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance evaluation of WMN-PSODGA system for node placement problem in WMNs considering four different crossover methods. In: The 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA-2018), pp 850–857. IEEE (2018)
Google Scholar
Barolli, A., Sakamoto, S., Durresi, H., Ohara, S., Barolli, L., Takizawa, M.: A comparison study of constriction and linearly decreasing Vmax replacement methods for wireless mesh networks by WMN-PSOHC-DGA simulation system. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds.) 3PGCIC 2019. LNNS, vol. 96, pp. 26–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33509-0_3
CrossRef
Google Scholar
Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering linearly decreasing inertia weight and linearly decreasing Vmax replacement methods. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_2
CrossRef
Google Scholar
Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering random inertia weight and linearly decreasing Vmax router replacement methods. In: Barolli, L., Hussain, F.K., Ikeda, M. (eds.) CISIS 2019. AISC, vol. 993, pp. 13–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22354-0_2
CrossRef
Google Scholar
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
CrossRef
Google Scholar
Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for Two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)
Google Scholar
Ohara, S., Barolli, A., Sakamoto, S., Barolli, L.: performance analysis of WMNs by WMN-PSODGA simulation system considering load balancing and client uniform distribution. In: Barolli, L., Xhafa, F., Hussain, O.K. (eds.) IMIS 2019. AISC, vol. 994, pp. 25–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22263-5_3
CrossRef
Google Scholar
Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet Things 3, 120–133 (2018)
CrossRef
Google Scholar
Ozera, K., Inaba, T., Bylykbashi, K., Sakamoto, S., Ikeda, M., Barolli, L.: A WLAN triage testbed based on fuzzy logic and its performance evaluation for different number of clients and throughput parameter. Int. J. Grid Util. Comput. 10(2), 168–178 (2019)
CrossRef
Google Scholar
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
CrossRef
Google Scholar
Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Analysis of WMN-HC simulation system data using friedman test. In: The Ninth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp 254–259. IEEE (2015)
Google Scholar
Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)
Google Scholar
Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp 206–211 (2016). https://doi.org/10.1109/AINA.2016.42
Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23(1), 27–33 (2017). https://doi.org/10.1007/s11036-017-0897-7
CrossRef
Google Scholar
Sakamoto, S., Barolli, A., Barolli, L., Okamoto, S.: Implementation of a web interface for hybrid intelligent systems. Int. J. Web Inf. Syst. 15(4), 420–431 (2019)
CrossRef
Google Scholar
Sakamoto, S., Barolli, L., Okamoto, S.: WMN-PSOSA: an intelligent hybrid simulation system for WMNs and its performance evaluations. Int. J. Web Grid Serv. 15(4), 353–366 (2019)
CrossRef
Google Scholar
Sakamoto, S., Liu, Y., Barolli, L., Okamoto, S.: Performance evaluation of CM and RIWM router replacement methods for WMNs by WMN-PSOHC hybrid intelligent simulation system considering chi-square distribution of mesh clients. In: Barolli, L., Yim, K., Chen, H.-C. (eds.) IMIS 2021. LNNS, vol. 279, pp. 179–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79728-7_18
CrossRef
Google Scholar
Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)
MathSciNet
CrossRef
Google Scholar
Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)
Google Scholar
Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810
CrossRef
Google Scholar
Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)
Google Scholar
Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)
Google Scholar