Skip to main content

Performance Evaluation of WMNs by WMN-PSOHC Hybrid Simulation System Considering Different Number of Mesh Routers and Chi-Square Distribution of Mesh Clients

  • 201 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 346)

Abstract

Wireless Mesh Networks (WMNs) have many features such as low up-front costs and easy maintenance, and they are becoming an important networking infrastructure. However, WMNs have some problems such as node placement, security, transmission power and so on. To solve these problems, we have implemented a hybrid simulation system based on PSO and HC called WMN-PSOHC. In this paper, we evaluate the performance of WMNs by using WMN-PSOHC considering different number of mesh routers and Chi-square distribution of mesh clients. Simulation results show that 32 mesh routers are enough for covering all mesh clients in the considered scenario.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-90072-4_2
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-90072-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    CrossRef  Google Scholar 

  2. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: A hybrid simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs: performance evaluation considering normal and uniform distribution of mesh clients. In: Barolli, L., Kryvinska, N., Enokido, T., Takizawa, M. (eds.) NBiS 2018. LNDECT, vol. 22, pp. 42–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98530-5_4

    CrossRef  Google Scholar 

  3. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for wmns considering different distributions of mesh clients. In: Barolli, L., Xhafa, F., Javaid, N., Enokido, T. (eds.) IMIS 2018. AISC, vol. 773, pp. 32–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93554-6_3

    CrossRef  Google Scholar 

  4. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance evaluation of WMN-PSODGA system for node placement problem in WMNs considering four different crossover methods. In: The 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA-2018), pp 850–857. IEEE (2018)

    Google Scholar 

  5. Barolli, A., Sakamoto, S., Durresi, H., Ohara, S., Barolli, L., Takizawa, M.: A comparison study of constriction and linearly decreasing Vmax replacement methods for wireless mesh networks by WMN-PSOHC-DGA simulation system. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds.) 3PGCIC 2019. LNNS, vol. 96, pp. 26–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33509-0_3

    CrossRef  Google Scholar 

  6. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering linearly decreasing inertia weight and linearly decreasing Vmax replacement methods. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_2

    CrossRef  Google Scholar 

  7. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering random inertia weight and linearly decreasing Vmax router replacement methods. In: Barolli, L., Hussain, F.K., Ikeda, M. (eds.) CISIS 2019. AISC, vol. 993, pp. 13–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22354-0_2

    CrossRef  Google Scholar 

  8. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    CrossRef  Google Scholar 

  9. Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for Two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)

    Google Scholar 

  10. Ohara, S., Barolli, A., Sakamoto, S., Barolli, L.: performance analysis of WMNs by WMN-PSODGA simulation system considering load balancing and client uniform distribution. In: Barolli, L., Xhafa, F., Hussain, O.K. (eds.) IMIS 2019. AISC, vol. 994, pp. 25–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22263-5_3

    CrossRef  Google Scholar 

  11. Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet Things 3, 120–133 (2018)

    CrossRef  Google Scholar 

  12. Ozera, K., Inaba, T., Bylykbashi, K., Sakamoto, S., Ikeda, M., Barolli, L.: A WLAN triage testbed based on fuzzy logic and its performance evaluation for different number of clients and throughput parameter. Int. J. Grid Util. Comput. 10(2), 168–178 (2019)

    CrossRef  Google Scholar 

  13. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    CrossRef  Google Scholar 

  14. Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Analysis of WMN-HC simulation system data using friedman test. In: The Ninth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2015), pp 254–259. IEEE (2015)

    Google Scholar 

  15. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)

    Google Scholar 

  16. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA-2016), pp 206–211 (2016). https://doi.org/10.1109/AINA.2016.42

  17. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. 23(1), 27–33 (2017). https://doi.org/10.1007/s11036-017-0897-7

    CrossRef  Google Scholar 

  18. Sakamoto, S., Barolli, A., Barolli, L., Okamoto, S.: Implementation of a web interface for hybrid intelligent systems. Int. J. Web Inf. Syst. 15(4), 420–431 (2019)

    CrossRef  Google Scholar 

  19. Sakamoto, S., Barolli, L., Okamoto, S.: WMN-PSOSA: an intelligent hybrid simulation system for WMNs and its performance evaluations. Int. J. Web Grid Serv. 15(4), 353–366 (2019)

    CrossRef  Google Scholar 

  20. Sakamoto, S., Liu, Y., Barolli, L., Okamoto, S.: Performance evaluation of CM and RIWM router replacement methods for WMNs by WMN-PSOHC hybrid intelligent simulation system considering chi-square distribution of mesh clients. In: Barolli, L., Yim, K., Chen, H.-C. (eds.) IMIS 2021. LNNS, vol. 279, pp. 179–187. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79728-7_18

    CrossRef  Google Scholar 

  21. Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    MathSciNet  CrossRef  Google Scholar 

  22. Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)

    Google Scholar 

  23. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810

    CrossRef  Google Scholar 

  24. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS-2007), pp. 1–9 (2007)

    Google Scholar 

  25. Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS-2009), pp. 400–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sakamoto, S., Liu, Y., Barolli, L., Okamoto, S. (2022). Performance Evaluation of WMNs by WMN-PSOHC Hybrid Simulation System Considering Different Number of Mesh Routers and Chi-Square Distribution of Mesh Clients. In: Barolli, L. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2021. Lecture Notes in Networks and Systems, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-030-90072-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90072-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90071-7

  • Online ISBN: 978-3-030-90072-4

  • eBook Packages: EngineeringEngineering (R0)